What is a Conditional Random Field?

Before we describe a CRF informally as an MRF where the x variables are always observed.

Here's a better definition. A CRF defines an MRF over y for every fixed value of x:

$$p(y|x) = \frac{1}{Z(x)} \prod_{c \in C} \phi_c(x, y_c), \quad Z(x) = \sum_y \prod_{c \in C} \phi_c(x, y_c)$$

Notes:

- No distribution over x
- Normalized separately for each x
- Each potential ϕ_c can depend arbitrarily on x (often designed with "local" connections to selected entries of x, but not necessary)
- Cliques c are subsets of the y indices
Learning in CRFs

In CRFs, we maximize the conditional log-likelihood:

$$\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(y^{(n)}|x^{(n)})$$

Some aspects are similar to learning in MRFs. A key difference is that the “model marginals” are different for each data case, because the normalization constant $Z(x^{(n)})$ is different.

(see HW2, HW3)

Example: Logistic Regression

Logistic regression is a simple CRF with $y \in \{0,1\}$.

$$\log p_{\theta}(y|x) = \frac{1}{Z(x)} \exp(\theta^T x \cdot 1[y = 1])$$

$$Z(x) = \exp(\theta^T x) + 1$$

$$p_{\theta}(y = 1|x) = \frac{\exp(\theta^T x)}{1 + \exp(\theta^T x)}$$

Example: Chain CRF

One way to view a chain-structured CRF is as a sequence of logistic regression models, with pairwise connections between adjacent y variables to encourage a particular sequential structure in predicted labels:
Message-Passing Implementation

Overflow/Underflow and Log-Sum-Exp

- When factor values are small or large, or with many factors, messages can underflow or overflow since they are products of many terms. A common solution is to manipulate all factors and messages in log space.

- Example: consider the common factor manipulation

\[A(x) = \sum_y B(x, y) C(y) \]

Let’s compute \(\alpha(x) = \log A(x) \) from \(\beta(x, y) = \log B(x, y) \) and \(\gamma(y) = \log C(y) \)

- Step 1: multiplication of factors is addition of log-factors

\[\lambda(x, y) := \log(B(x, y)C(y)) = \beta(x, y) + \gamma(y) \]

Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow

\[\text{logsumexp}(a_1, \ldots, a_k): \]

- \(c \leftarrow \max_i a_i \)
- \(\text{return } c + \log \sum_i \exp(a_i - c) \)

See \texttt{scipy.special.logsumexp}

(Comment: log-space implementation probably not needed in HW2, probably needed in HW3.)
Message Passing in Trees

A more general version of message passing works for any tree-structured MRF, that is, an MRF of the following form where $G = (V, E)$ is a tree:

$$p(x) = \prod_{i \in V} \phi_i(x_i) \prod_{(i,j) \in E} \phi_{ij}(x_i, x_j).$$

Message passing can be derived from variable elimination. Take x_i as the root and eliminate variables from leaf to root. We get

$$Z = \sum_{x_i} \phi_i(x_i) \prod_{j \in nb(i)} m_{j \rightarrow i}(x_i)$$

$$p(x_i) = \frac{1}{Z} \phi_i(x_i) \prod_{j \in nb(i)} m_{j \rightarrow i}(x_i)$$

The “message” $m_{j \rightarrow i}(x_i)$ is the result of summing out all factors and variables in the subtree T_j rooted at x_j. By similar reasoning, the pairwise marginal for $(i,j) \in E$ is

$$p(x_i, x_j) = \frac{1}{Z} \phi_i(x_i) \phi_{ij}(x_i, x_j) \phi_j(x_j) \prod_{k \in nb(i) \backslash j} m_{k \rightarrow i}(x_i) \prod_{l \in nb(j) \backslash i} m_{l \rightarrow j}(x_j)$$
Recurrence for Messages

The messages satisfy the following recurrence

\[m_{j \rightarrow i}(x_i) = \sum_{x_j} \phi_j(x_j) \phi_{ij}(x_i, x_j) \prod_{k \in \text{nb}(j) \setminus i} m_{k \rightarrow j}(x_j) \]

This can be understood by expanding the summation over \(T_j \) to group factors for subtrees rooted at each child of \(x_j \), that is, for each node \(k \in \text{nb}(j) \setminus i \).

Message-Passing

Importantly, the message from \(j \) to \(i \) doesn’t depend on which particular node is the root. There are only \(2(n-1) \) total messages and we can compute them all in two passes through the tree.

Say that \(j \) is ready to send to \(i \) if \(j \) has received messages from all \(k \in \text{nb}(j) \setminus i \).

Message passing: while any node \(j \) is ready to send to \(i \), compute \(m_{j \rightarrow i} \)

\[m_{j \rightarrow i}(x_i) = \sum_{x_j} \phi_j(x_j) \phi_{ij}(x_i, x_j) \prod_{k \in \text{nb}(j) \setminus i} m_{k \rightarrow j}(x_j) \]

This algorithm is described asynchronously (“ready-to-send”), but in practice: pass messages from leaves to root of tree and back.

Message-Passing Summary

\[m_{j \rightarrow i}(x_i) = \sum_{x_j} \phi_j(x_j) \phi_{ij}(x_i, x_j) \prod_{k \in \text{nb}(j) \setminus i} m_{k \rightarrow j}(x_j) \]

\[Z = \sum_{x_i} \phi_i(x_i) \prod_{j \in \text{nb}(i)} m_{j \rightarrow i}(x_i) \]

\[p(x_i) = \frac{1}{Z} \phi_i(x_i) \prod_{j \in \text{nb}(i)} m_{j \rightarrow i}(x_i) \]

\[p(x_i, x_j) = \frac{1}{Z} \phi_i(x_i) \phi_j(x_i, x_j) \phi_{ij}(x_i, x_j) \prod_{k \in \text{nb}(j) \setminus i} m_{k \rightarrow j}(x_j) \prod_{\ell \in \text{nb}(j) \setminus i} m_{\ell \rightarrow j}(x_j) \quad (i, j) \in E \]
Discussion

- Message-passing computes all single and pairwise marginals at roughly 2x cost of variable elimination.
- It is restricted to pairwise MRFs and trees, but can be extended in some ways.
- For exactly answering one query in any MRF, variable elimination is faster than message passing.
- For exactly answering a set of marginal queries, variable elimination usually takes at most a factor of $O(n)$ more time.

Sketches of Extensions

- What if the MRF has factors on more than two variables? (keyword: factor graphs)
 - Answer 1: group nodes (keyword: clique trees or junction trees)

- What if the MRF is not tree-structured, i.e., G has cycles?
 - Answer 2: use message-passing as a fixed-point iteration (keyword: loopy belief propagation)