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COMPSCI 688: Probabilistic Graphical Models
Lecture 10: Learning in MRFs

Learning in MRFs
Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)
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Learning in Pairwise MRFs O—=Cr— Learning in Pairwise MRFs
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Let's consider the problem of learning in a pairwise MRF with only edge potentials The learning problem is: given a data set xV), ..., x(™), find 6 to maximize
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Log-Likelihood of Single Datum ‘3(&”(”6)
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Let's start by reformulating the log-likelihood of a

emevo)\{ = /-\ac?) ‘,cc)b

ingle datum x. Write
Po(x) = Z((,) exp(—Ep(x))

where —Ej(x) is the negative energy:
9( ) i gv}&/w\wwa\ﬂu\ preto
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The derivative with respect to a generic parameter % is
0 0 9
78933 log pa(x) = 86‘1” (—Fp(x)) — aeab log Z(6)

We'll treat each term separately.
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—Eg(X) = log H ¢ij(:c,»,:cj;9) = Z ij"zj
',J')EEZ | : (i,j)eE \
9 qT XA,", 9 e
The log-likelihood of datum x is: ((,))QED) 0ix39) = Z Log (95 ")
log pg(x) = —Ep(x) — log Z(6)
5/25 6/25
Iaeggrggg.gol\o/lggéo \OVC);SE)(‘)SDJ Conditional Random Field? lgl\é?;;ge Passing Implementation Iézaggg%i.nolg\gggo \OV(;S(L)ISOJ Conditional Random Field? glgésgge Passing Implementation
. R 0 | .. . R _
Negative Energy Derivative % ,; Y Log-Partition Function Derivative Z[@);— ?zkp( Eg(x)>
00
9(0, o, :) 9,1 13 The derivative of the log-partition function has a special form.
Recall the negative energy definition: 2 ) | (
2 00 o lo = — . Jg0b 2[0
—FEy(x Z 09%%] 38:‘ 2t 9>3> =0 L % Z(e) UG )
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Its derivative is easy, because it is linear in the parameters — é(a) . % —)—9—:\? exp(— Ee(ﬁ:))
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Put Together

Put together, the derivative of the log-likelihood of a single datum is

—_—

0
620 log pp(x) = I[zy, = ajzy, = b] — Pp(Xy = a, X, = b)
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Log-Likelihood of N Data Points

Message-Passing Implementation
[e]e]e]e)

With N data points, the derivative of the log-likelihood is

0
aeab (0)

0
908 Zlogpa (m)

_ 1
PJ n=t

= (N Z ]I[mgn) — a,:vi") = b}) — Py(Xy=0a,X,="b)
n=1

#(Xu=10a, X, =b)

— Py(Xy =a,X, =b)

N .
datnr mavqiuel mode( ma./smol[
The derivative is data marginal minus a model marginal.

N
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Computing the Derivatives

aﬁabﬁ(e) #(X“ :](\]';X”:b) _PG(Xu:avXU:b) = O

How do we compute the derivative?
— First term (uwx‘r('v\% tevate H\fwg% data
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Each partial derivative must be zero at a maximum. This gives the moment-matching
condition, which asserts the data marginal should match the nMgi/r@l:
ta margin

Moment-Matching

X, =a, X, =
#X =X =b) by x, =) Y(ev)eE
N Y ae Vol (Ya)
b b e \Val(%y
This is similar to counting in Bayes net learning, but the marginal Py(X, = a, X, =)

depends on all parameters, not just the “local parameters” ¢;,,, because of the global
normalization constant Z(6).

The moment matching conditions for all parameters form a system of equations. It has a
“unique” solution (the distribution is unique, not the parameters), but it's not easy to
solve directly.
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Learning via Optimization

Instead, we can numerically maximize the log-likelihod, for example by gradient ascent:

> Initialize 6 (e.g. 6 < 0)

> Repeat \[(C'('Of U_p O\“ w(’—r'd‘S
> 0« 0+ aVeL(0)

2
6 — &+ 4 5ge 1Le)
r\\g-\dni rm\'cJQ.GJ, 0.0| u
We saw above how to contpute the entries of the gradient VyL(9).

The key subroutine is inference in the MRF.
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Before we describe a CRF informally as an MRF where the x variables are always
observed.
What is a Conditional Random Field? OaOaOa?) Rk S (Rl
®® ® ® #4719
Here's a better definition. A CRF defines an MRF over y for every fixed value of x:
1
p(ylx) = % H Pe(Xye), Z(x) = Z H de(x,¥c)
k‘./ CS_C/\/\/ Y eeC
uv novm
pfcz’o u/tl7
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Notes:

» No distribution over x

» Normalized separately for each x

» Each potential ¢, can depend arbitrarily on x (often designed with “local”
connections to selected entries of x, but not necessary)

» Cliques c are subsets of the y indices
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In CRFs, we maximize the conditional log-likelihood:

)

1 N
1 () | (n)
max Y " log po(y'™[x™)

n=1

Some aspects are similar to learning in MRFs. A key difference is that the “model
marginals” are different for each data case, because the normalization constant Z(x(™)
is different.

(see HW2, HW3)
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Discussion Example: Logistic Regression @‘—‘7®
(% ¥) = plx) plyl)
Logistic regression is a simple CRF with y € {0,1}.
Why CRFs? . | y=9
- Ty, —
> It's often better not to learn a model for p(x) if it is not needed, e.g., if you only log py (y[x) = Z(x) exp(f x-Ily =1]) = EXP(Q‘T“%) Y=l
want to predict p(y|x). This is especially true if we have lots of data.
> But it may be better to use an MRF and learn a full model p(x,y) for the joint Z(x) = exp(x) + 1
distribution, especially if the model is “correct” and with smaller data sets.
(Intuition: the x data can help you learn the correct model faster.) - , 7 >
exp(f' x) . J (5 %
=1 =7V "/ = glgmol
{ Poly %) 1+expfTx 5
A 2
2:6'% sgred(2)= Trer
-0 bo
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Example: Chain CRF

One way to view a chain-structured CRF is as a sequence of logistic regression models,
with pairwise connctions between adjacent y variables to encourage a particular

sequential structure in predicted labels: :

‘E

( w«je
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Overflow/Underflow and Log-Sum-Exp pea= 21]\(15‘(&)

» When factor values are small or large, or with many factors, messages can
underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.

» Example: consider the common factor manipulation

A(@) = > B(z,y)C(y)
Y

NV
zx@(?(“/‘fv
Let's compute a(z) = log A(z) from B(z,y) = log B(z,y) and v(y) = log C(y)

» Step 1: multiplication of factors is addition of log-factors

A, y) = log(B(z,y)C(y)) = Bz, y) +v(v)
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» Step 2: marginalization requires exponentiation (“log-sum-exp”)

a(x) = log (Z exp A(x,y))

Yy
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Numerically Stable log-sum-exp

Before exponentiating, we need tQ, be careful to shift valueskto avoid overflow/underflow

logsumexp(ay, ..., ax): lcﬁzexp(a<>= C [ﬁ?e*P(“E'C>

> C < max; a;
> return ¢ + log Y, exp(a; — ¢)

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in
HWS3.)
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