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Message Passing in Chains
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Message Passing Derivation
Let’s go back to our chain example. Suppose we want to compute p(x4)? Which
variables should we eliminate, and in what order?
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What if we want to compute p(x3)? Which variables should we eliminate, and in what
order?

5 / 22

Message Passing in Chains Message Passing in Trees Discussion and Extensions

Message Passing Derivation
When doing “leaf-first” variable elimination to compute any marginal p(xi), there are
only 6 di�erent intermediate factors

m1æ2,m2æ3,m3æ4, m4æ3,m3æ3,m2æ1

Let’s call mjæi the “message” from j to i.

We can compute Z by “collecting” messages at any node:

Z =
ÿ

xi

„i(xi)
Ÿ

jœnb(i)
mjæi(xi)

The general formula for a marginal is similar, but we omit the final summation and
normalize:

p(xi) = 1
Z

„i(xi)
Ÿ

jœnb(i)
mjæi(xi)
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Message Passing Derivation
The messages satisfy recurrences, e.g.

m2æ3(x3) =
ÿ

x2

m1æ2(x2)„2(x2)„23(x2, x3)

The message mi≠1æi(xi) sums out all variables from the product of all factors “to the
left” of xi
The message mi+1æi(xi) has a similar recurrence, and sums out variables/factors “to
the right”.

Using the recurrences, we can compute all messages, and therefore all marginals in two
passes through the chain, one in each direction.

7 / 22

Message Passing in Chains Message Passing in Trees Discussion and Extensions

Message Passing in a Chain

I Initialize m0æ1(x1) = 1, mn+1æn(xn) = 1.
I For i = 2 to n

I Let mi≠1æi(xi) =
q

xi≠2
mi≠2æi≠1(xi≠1)„i≠1(xi≠1)„i≠1,i(xi≠1, xi)

I For i = n ≠ 1 down to 1
I Let mi+1æi(xi) =

q
xi+2

mi+2æi+1(xi+1)„i+1(xi+1)„i,i+1(xi, xi+1)

I Compute each unnormalized marginal as p̂(xi) = mi≠1æi(xi)„i(xi)mi+1æi(xi)
I Compute Z = q

xi
p̂(xi) for any i, and normalize each marginal: p(xi) = 1

Z p̂(xi)
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Pairwise Marginals
I Correct formula for a pairwise marginal p(xi, xi+1)?

p(xi, xi+1) = 1
Z
mi≠1æi(xi)„i(xi)„i,i+1(xi, xi+1)„i+1(xi+1)mi+2æi+1(xi+1)
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Discussion: Message Passing vs. Variable Elimination

I Variable elimination can compute marginals and Z exponentially faster than
direct summation for nice enough graphs (e.g. chains, trees)

I Naively, to compute all single-node marginals you would have to run variable
elimination n times, once per node (but this would repeat work)

I Message passing can compute all the marginals for the same cost as running
variable elimination twice, so is a factor of ¥ n/2 faster than naive variable
elimination

I (Message passing is nice, but you could say variable elimination did the heavy
lifting.)
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Message Passing in Trees
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Message Passing in Trees

A more general version of message passing works for any tree-structured MRF, that is,
an MRF of the following form where G = (V,E) is a tree:

p(x) =
Ÿ

iœV
„i(xi)

Ÿ

(i,j)œE
„ij(xi, xj).
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Message passing can be derived from variable elimination. Take xi as the root and
eliminate variables from leaf to root. We get

Z =
ÿ

xi

„i(xi)
Ÿ

jœnb(i)
mjæi(xi)

p(xi) = 1
Z

„i(xi)
Ÿ

jœnb(i)
mjæi(xi)

The “message” mjæi(xi) is the result of summing out all factors and variables in the
subtree Tj rooted at xj .
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By similar reasoning, the pairwise marginal for (i, j) œ E is

p(xi, xj) = 1
Z

„i(xi)„ij(xi, xj)„j(xj)
Ÿ

kœnb(i)\j
mkæi(xi)

Ÿ

¸œnb(j)\i
m¸æj(xj)

14 / 22

Message Passing in Chains Message Passing in Trees Discussion and Extensions

Recurrence for Messages
The messages satisfy the following recurrence

mjæi(xi) =
ÿ

xj

„j(xj)„ij(xi, xj)
Ÿ

kœnb(j)\i
mkæj(xj)

This can be understood by expanding the summation over Tj to group factors for
subtrees rooted at each child of xj , that is, for each node k œ nb(j) \ i.
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Message-Passing

Importantly, the message from j to i doesn’t depend on which particular node is the
root. There are only 2(n ≠ 1) total messages and we can compute them all in two
passes through the tree.

Say that j is ready to send to i if j has received messages from all k œ nb(j) \ i.
Message passing: while any node j is ready to send to i, compute mjæi using
recurrence from previous slide.

This algorithm is described asynchronsously (“ready-to-send”), but in practice: pass
messages from leaves to root of tree and back.
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Message-Passing Summary

mjæi(xi) =
ÿ

xj

„j(xj)„ij(xi, xj)
Ÿ

kœnb(j)\i
mkæj(xj)

Z =
ÿ

xi

„i(xi)
Ÿ

jœnb(i)
mjæi(xi)

p(xi) = 1
Z

„i(xi)
Ÿ

jœnb(i)
mjæi(xi)

p(xi, xj) = 1
Z

„i(xi)„ij(xi, xj)„j(xj)
Ÿ

kœnb(i)\j
mkæi(xi)

Ÿ

¸œnb(j)\i
m¸æj(xj) (i, j) œ E
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Discussion and Extensions
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Discussion
I Message-passing computes all single and pairwise marginals at roughly 2x cost of

variable elimination
I It is restricted to pairwise MRFs and trees, but can be extended in some ways
I For exactly answering one query in any MRF, variable elimination is faster than

message passing
I For exactly answering a set of marginal queries, variable elimination usually takes at

most a factor of O(n) more time
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Sketches of Extensions
I What if the MRF has factors on more than two variables? (keyword: factor graphs)
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I What if the MRF is not tree-structured, i.e., G has cycles?
I Answer 1: group nodes (keyword: clique trees or junction trees)
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I What if the MRF is not tree-structured, i.e., G has cycles?
I Answer 2: use message-passing as a fixed-point iteration (keyword: loopy belief

propagation)
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