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Markov Random Fields

» Markov random field 1
p(x) = 7 H Pe(xc)
ceC

» Dependence graph G

> nodes i and j connected by an edge if they appear together in some factor

> X4 L Xp|Xg if S separates A from B in G
» Examples: Ising model, conditional random fields (images and text), models for

differential privacy, Bayes nets

» Today: inference = answering probability queries
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Inference in Markov Networks

» Given a Markov network, the main task is probabilistic inference, which means
answering probability queries of the form

p(xqlxe) =Y p(xq, xv|xEg)

Xy

> condition on evidence variables xg
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Conditioning: Single Factor

Suppose we have a single-factor MRF p(x1, z9) = % (1, x2) for two binary variables.

We are given a fixed value for zo, and want an MRF for p(z1]z2), i.e.:

p(zi|re) = %d/(wl)

> marginalize unobserved variables x; Observe (21, 22) 1 1
> compute the joint distribution over query variables x¢ p(x1|xe) = p\r1, 2) - — (w1, 22)
, _ . _ plz2)  plza) Z
» ...often by transforming Markov network into one with fewer or simpler factors T
> Conditioning is easy
> Marginalization is hard!
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For fixed z, the conditional p(x1|z2) is proportional to the joint p(x1, z2). We can use Conditioning; General Case
the same factor, but hard-code z2 so that only z; is a free variable:
¢'(x1) = d(a1,22), Z'=p(x2)Z
For a general MRF, we can apply the same reasoning to reduce every factor by
hard-coding the evidence variables
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Factor Reduction: Example

&,(Y,Y;)  Y,=0
¢1(Y1'Y2) lylio : 1 2
Y,=1 7 2
¢2(Y11x1)
Y,=0 3 9
¢3(YZ,XZ)
Y,=0
Y, X Y, X 2
o) b R

Query: P(Y,,Y,| X;=0, X,=1)
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Factor Reduction: Step 1

¢ (Y % ) ¢I(Y1IYZ)
MW t2

Inference: Marginalization
000

d’,(Yy) ¢’5(Y,)

¢3(anxz)
Y,=0

Y,=1

Query: P(Y,,Y,| X,=0, X,=1)
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Factor Reduction: Step 2

$,(Y,Y,)  Y,=0
$(¥,Ys) —
7 2
¢1(Y1,X1) X;=0
@’,(Y,) d'5(Y,) Yy=0 3

v=1 [

&3(Y2,X;)
Y,=0
Y,=1

Query: P(Y,,Y,| X;=0, X,=1)
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Factor Reduction: Step 2

$,(Y,Y,) Y,=0
1(Yy,Ys) veo

Inference: Marginalization

Y,=1

d’,(Yy) ¢’5(Y,)

Query: P(Y,,Y,| X,=0, X,=1) < p,(Y,,Y,) d,(Y;) d'5(Y,)
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Factor Reduction: General Algorithm

Suppose p(x) = % [Teec ¢e(xc) and we observe X; = z; for a single node i
We obtain a new MRF for p(x_;|z;) by the following procedure:

For each factor ¢. such that i € ¢

> Replace ¢.(x.) by ¢/c\1‘(xc\i) = ¢E(xc\i7 ;)
> The x,\; variables remain “free”, and z; is hard-coded

To condition on many variables, we can repeat this procedure. Since order doesn't
matter, we can hard-code all evidence variables in each factor at the same time.
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Marginalization

Marginalization is the process of summing over some of the variables to get the marginal
distribution of the remaining variables, or the partition function.

For example, the partition function is

2=3 % Y[l ot

1 Z2 Tn ceC

Naively, this takes exponential time, but we can sometimes use the factorization
structure to speed it up.
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Example: Variable Elimination on a Chain

Consider the following MRF on a four-node “chain” graph:

p(x1, 2,73, 74) = %d’l(11)¢2(I2)¢3(I3)¢4($4)¢12(Ilv$2)¢23($27I3)¢34(I3,I4)

S T wj dij(wi, )
i pi(w) 0 0 2
0 1 0 1 1
1 2 1 0 1
- 1 1 2

Inference: Marginalization
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Let's compute Z:

Z=3 338 (1) do(w2) ps(w3) da(wa) d12(21, w2)do 3(2, 23) B3 (w3, 24)

Ty T2 X3 T4

=Y di(1) Y po(w2)pr2(x1,72) Y d3(w3)do3(w,23) Y | pa(aa)psalws, x4)

ma—3(x3)

=3 (1) Y do(a2)dr2(x1, 72) Y 3(w3)d23(wa, w3)mys(xs)

m3—s2(z2)

= Z o1(z1) Z Pa(x2)P1,2(1, 2)M3—2(22)

ma—1(z1)

= Z(bl(Il)mQal(xl)'
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Pictorially, this is how we changed the MRF
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What if we want to compute the unnormalized marginal p(z1)?

Pa1) =D D> di(w1)da(wa)ds(w3)palwa)dr2(a1, w2)po 3(w2, 23)h3,4(w3, 24)

T2 T3 T4

= ¢1(21) Y do(w2)dra(a1,22) Y ds(w3)dos(w2, w3) > da(w4)d3a(ws, x4)

ma_s3(x3)

= ¢1(w1)ma1(21).

The computation is the same, but we don't eliminate x;.
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What if we want to compute the actual marginal p(z1)?

Take p(x1) and normalize it

Z=Yp), plen) = L)

Lesson: always normalize at the end
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What if we eliminate x5 first?

Z= 33" "b1(x1)pa(w2)d3(w3)da(wa) b12(w1, T2) b2,3(w2, T3) P34 (w3, T4)

Tl X2 X3 T4

=D 3 d1(@1)da(w2)palma)dra(m1, w2) Y d3(ws)das(w2, x3)ds.a(ws, 4)

Tl X2 T4

To4(w2,24)

=D 3 d1(@1)da(w2)pa(wa) o4 (w2, 24)

1 T2 T4

This is less efficient because we create a larger intermediate factor (with three variables
instead of two, before summing out x3), but it is still correct.
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What if our graph is a star graph?

If we eliminate leaves first, it is very efficient. If we eliminate the hub node first, it
creates a factor with size exponential in the number of nodes.

Inference: Marginalization
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The Variable Elimination Algorithm Variable Elimination Discussion
Variable elimination is an algorithm to compute any marginal distribution in any MRF » The efficiency of variable elimination depends on the maximum size of the
In words: pick a variable 2; to eliminate, multiply together all factors containing x; to intermediate factors created, which depends on the elimination ordering
get an intermediate factor, then sum out x; > Inference in MRFs is NP-hard, so we can't always find a good elimination ordering.
> Let F' = {¢.: c € C} be the set of factors > Finding the best elimination ordering for a given MRF is also NP-hard!
» For each variable 7 in some elimination order (may not include all variables) , - o . ) )
> Let A={¢. € F:i€c} be the set of factors whose scope contains i > It's always efficient to eliminate leaves if present (intermediate factors are no larger
> Let ¢a(xa) = [1,.ca Pc(xc) be the product of factors in A, with scope a equal to the than original ones)
union of the scopes of the individual factors . > —> for trees, we can find an efficient elimination ordering
> Let ¥i(Xa\i) = D4, Pa(Xa\is i) be the result of summing out ;
> Let F=F\ AU{y;} > In fact, because the elimination ordering is predictable in trees, we can realize extra
. . o . efficiencies when answering multiple queries through a dynamic programming
The final set of factors forms an MRF for the marginal distribution of the variables that approach known as message passing
were not eliminated.
23/24 24 /24




