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Markov Random Fields

▶ Markov random field
p(x) = 1

Z

∏

c∈C
ϕc(xc)

▶ Dependence graph G
▶ nodes i and j connected by an edge if they appear together in some factor
▶ XA ⊥ XB |XS if S separates A from B in G

▶ Examples: Ising model, conditional random fields (images and text), models for
differential privacy, Bayes nets

▶ Today: inference = answering probability queries
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Inference: Conditioning
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Inference in Markov Networks

▶ Given a Markov network, the main task is probabilistic inference, which means
answering probability queries of the form

p(xQ|xE) =
∑

xU

p(xQ,xU |xE)

▶ condition on evidence variables xE

▶ marginalize unobserved variables xU

▶ compute the joint distribution over query variables xQ

▶ . . . often by transforming Markov network into one with fewer or simpler factors
▶ Conditioning is easy
▶ Marginalization is hard!
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Conditioning: Single Factor

Suppose we have a single-factor MRF p(x1, x2) = 1
Zϕ(x1, x2) for two binary variables.

We are given a fixed value for x2, and want an MRF for p(x1|x2), i.e.:

p(x1|x2) = 1
Z ′ϕ

′(x1)

Observe
p(x1|x2) = p(x1, x2)

p(x2) = 1
p(x2) · 1

Z︸ ︷︷ ︸
1/Z′

ϕ(x1, x2)
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For fixed x2, the conditional p(x1|x2) is proportional to the joint p(x1, x2). We can use
the same factor, but hard-code x2 so that only x1 is a free variable:

ϕ′(x1) = ϕ(x1, x2), Z ′ = p(x2)Z
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Conditioning: General Case

For a general MRF, we can apply the same reasoning to reduce every factor by
hard-coding the evidence variables
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Factor Reduction: Example
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Factor Reduction: Step 1
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Factor Reduction: Step 2
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Factor Reduction: Step 2
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Factor Reduction: General Algorithm

Suppose p(x) = 1
Z

∏
c∈C ϕc(xc) and we observe Xi = xi for a single node i

We obtain a new MRF for p(x−i|xi) by the following procedure:

For each factor ϕc such that i ∈ c

▶ Replace ϕc(xc) by ϕ′
c\i(xc\i) := ϕc(xc\i, xi)

▶ The xc\i variables remain “free”, and xi is hard-coded

To condition on many variables, we can repeat this procedure. Since order doesn’t
matter, we can hard-code all evidence variables in each factor at the same time.
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Inference: Marginalization
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Marginalization

Marginalization is the process of summing over some of the variables to get the marginal
distribution of the remaining variables, or the partition function.

For example, the partition function is

Z =
∑

x1

∑

x2

· · ·
∑

xn

∏

c∈C
ϕc(xc)

Naively, this takes exponential time, but we can sometimes use the factorization
structure to speed it up.
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Example: Variable Elimination on a Chain
Consider the following MRF on a four-node “chain” graph:

p(x1, x2, x3, x4) = 1
Z
ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ϕ12(x1, x2)ϕ23(x2, x3)ϕ34(x3, x4)

xi ϕi(xi)
0 1
1 2

xi xj ϕij(xi, xj)
0 0 2
0 1 1
1 0 1
1 1 2
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Let’s compute Z:

Z =
∑

x1

∑

x2

∑

x3

∑

x4

ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ϕ1,2(x1, x2)ϕ2,3(x2, x3)ϕ3,4(x3, x4)

=
∑

x1

ϕ1(x1)
∑

x2

ϕ2(x2)ϕ1,2(x1, x2)
∑

x3

ϕ3(x3)ϕ2,3(x2, x3)
∑

x4

ϕ4(x4)ϕ3,4(x3, x4)
︸ ︷︷ ︸

m4→3(x3)

=
∑

x1

ϕ1(x1)
∑

x2

ϕ2(x2)ϕ1,2(x1, x2)
∑

x3

ϕ3(x3)ϕ2,3(x2, x3)m4→3(x3)
︸ ︷︷ ︸

m3→2(x2)

=
∑

x1

ϕ1(x1)
∑

x2

ϕ2(x2)ϕ1,2(x1, x2)m3→2(x2)
︸ ︷︷ ︸

m2→1(x1)

=
∑

x1

ϕ1(x1)m2→1(x1).

Above, we eliminated x4, x3, x2, x1
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Pictorially, this is how we changed the MRF
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What if we want to compute the unnormalized marginal p̂(x1)?

p̂(x1) =
∑

x2

∑

x3

∑

x4

ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ϕ1,2(x1, x2)ϕ2,3(x2, x3)ϕ3,4(x3, x4)

= ϕ1(x1)
∑

x2

ϕ2(x2)ϕ1,2(x1, x2)
∑

x3

ϕ3(x3)ϕ2,3(x2, x3)
∑

x4

ϕ4(x4)ϕ3,4(x3, x4)
︸ ︷︷ ︸

m4→3(x3)

= · · ·
= ϕ1(x1)m2→1(x1).

The computation is the same, but we don’t eliminate x1.
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What if we want to compute the actual marginal p(x1)?

Take p̂(x1) and normalize it

Z =
∑

x1

p̂(x1), p(x1) = 1
Z
p̂(x1)

Lesson: always normalize at the end

20 / 24



Review Inference: Conditioning Inference: Marginalization

What if we eliminate x3 first?

Z =
∑

x1

∑

x2

∑

x3

∑

x4

ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ϕ1,2(x1, x2)ϕ2,3(x2, x3)ϕ3,4(x3, x4)

=
∑

x1

∑

x2

∑

x4

ϕ1(x1)ϕ2(x2)ϕ4(x4)ϕ1,2(x1, x2)
∑

x3

ϕ3(x3)ϕ2,3(x2, x3)ϕ3,4(x3, x4)
︸ ︷︷ ︸

τ24(x2,x4)

=
∑

x1

∑

x2

∑

x4

ϕ1(x1)ϕ2(x2)ϕ4(x4)τ24(x2, x4)

= · · ·

This is less efficient because we create a larger intermediate factor (with three variables
instead of two, before summing out x3), but it is still correct.
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What if our graph is a star graph?

If we eliminate leaves first, it is very efficient. If we eliminate the hub node first, it
creates a factor with size exponential in the number of nodes.
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The Variable Elimination Algorithm

Variable elimination is an algorithm to compute any marginal distribution in any MRF

In words: pick a variable xi to eliminate, multiply together all factors containing xi to
get an intermediate factor, then sum out xi

▶ Let F = {ϕc : c ∈ C} be the set of factors
▶ For each variable i in some elimination order (may not include all variables)

▶ Let A = {ϕc ∈ F : i ∈ c} be the set of factors whose scope contains i
▶ Let ϕa(xa) =

∏
ϕc∈A ϕc(xc) be the product of factors in A, with scope a equal to the

union of the scopes of the individual factors
▶ Let ψi(xa\i) =

∑
xi
ϕa(xa\i, xi) be the result of summing out xi

▶ Let F = F \A ∪ {ψi}

The final set of factors forms an MRF for the marginal distribution of the variables that
were not eliminated.
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Variable Elimination Discussion

▶ The efficiency of variable elimination depends on the maximum size of the
intermediate factors created, which depends on the elimination ordering

▶ Inference in MRFs is NP-hard, so we can’t always find a good elimination ordering.
▶ Finding the best elimination ordering for a given MRF is also NP-hard!

▶ It’s always efficient to eliminate leaves if present (intermediate factors are no larger
than original ones)

▶ =⇒ for trees, we can find an efficient elimination ordering
▶ In fact, because the elimination ordering is predictable in trees, we can realize extra

efficiencies when answering multiple queries through a dynamic programming
approach known as message passing
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