Markov Random Fields

A Markov random is a distribution that factors over a set of “cliques” C:

$$p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c), \quad Z = \sum_{x} \prod_{c \in C} \phi_c(x_c)$$

The dependence graph $\mathcal{G} = (V,E)$ is the graph where nodes i and j are connected by an edge if they appear together in some factor.

We say that $p(x)$ factors over \mathcal{G}, and denote this property as (F).

Markov Properties

The global Markov property (G) connects conditional independence to graph separation. Distribution $p(x)$ satisfies the global Markov property with respect to \mathcal{G} if

$$\text{sep}_{\mathcal{G}}(A,B|S) \implies X_A \perp X_B | X_S \quad (G)$$

There are two other Markov properties (local and pairwise) implied by the global Markov property.
Factorization and Markov Properties

It's easy to show that factorization implies Markov: \((F) \Rightarrow (G)\).

There is a famous partial converse. For a positive distribution: \((G) \Rightarrow (F)\)

Theorem (Hammersley-Clifford). If \(p(x) > 0\) for all \(x\), then \((F) \iff (G)\)

Example: Ising Model

- \(G\) is a lattice and \(X_i \in \{-1, 1\}\)
- Have unary potential \(\beta_i\) for each node \(i\) and pairwise potential \(\beta_{ij}\) for each edge \((i, j)\)

\[
p(x) = \frac{1}{Z} \prod_i \beta_i(x_i) \prod_{(i,j) \in E} \beta_{ij}(x_i, x_j)
\]

\[
\beta_i(x_i) = \exp(b_i x_i)
\]

\[
\beta_{ij}(x_i, x_j) = \exp(b_{ij} x_i x_j)
\]

- \(b_i > 0 \implies X_i \) likes to be positive
- \(b_{ij} > 0 \implies X_i \) and \(X_j \) like to be the same

In general, Markov networks can be seen as expressing preferences for certain local configurations of the variables.

Joint configurations with high probability balance the preferences of all factors.
Example: Simulating an Ising Model

Demo: Ising Model

\[p(x) = \frac{\exp \left(\frac{1}{T} \sum_{(i,j) \in E} x_i x_j \right)}{Z} \]

Example: Statistical Image Models

The Ising model with \(b_{ij} > 0 \) prefers smoothness, and can be used as a model for images in denoising procedures:

Example: Image Denoising
Example: Part-of-Speech Tagging

Conditional Random Fields

The previous two examples were examples of \textbf{conditional random fields} (CRFs), a very important model class in machine learning. A CRF is essentially a Markov network where one set of nodes is always conditioned on.

The \(y \) nodes are labels, and the \(x \) nodes are features.

Example: Image Segmentation
Some structure is lost in this transformation. When we replace \(p(a \mid b, c) \) by \(\phi(a, b, c) \), we "forget" that a Bayes net is **locally normalized**

\[
\sum_a \phi(a, b, c) = 1 \quad \forall b, c.
\]

This is a special property of Bayes nets and is central to V-structures, explaining away, and D-separation. It occurs "internally" to the factor \(\phi(a, b, c) \) and is not represented in the MRF graph structure.

Similarly, when we replace \(\prod_i p(x_i \mid x_{pa(i)}) \) by \(\frac{1}{Z} \prod_{c \in C} \phi_c(x_c) \), we “forget” that a Bayes net is **globally normalized**:

\[
\sum_x \prod_{c \in C} \phi_c(x_c) = 1 \implies Z = 1.
\]

This is another special property of Bayes nets that makes learning easy.
Inference in Markov Networks

- Given a Markov network, the main task is **probabilistic inference**, which means answering probability queries of the form
 \[p(y|x) = \sum_u p(u,y|x) \]

 - condition on \(x \) ("evidence")
 - marginalize latent variables \(u \)
 - compute the joint distribution of query variables \(y \)

- Most steps of inference can be viewed as transforming a Markov network into a different one with fewer or simpler factors
 - Conditioning is easy
 - Marginalization is hard! (exponential time in worst case, but linear in best case)

Conditioning: Single Factor

Suppose we have a single-factor MRF \(p(x_1, x_2) = \frac{1}{Z} \phi(x_1, x_2) \) for two binary variables. We are given a fixed value for \(x_2 \), and want an MRF for \(p(x_1|x_2) \), i.e.:

\[
p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)} = \frac{1}{p(x_2)} \cdot \frac{1}{Z} \phi(x_1, x_2)
\]

Observe

\[
p(x_1|x_2) \propto \phi(x_1, x_2)
\]

For fixed \(x_2 \), the conditional \(p(x_1|x_2) \) is **proportional** to the joint \(p(x_1, x_2) \). We can use the same factor, but hard-code \(x_2 \) so that only \(x_1 \) is a free variable:

\[
\phi'(x_1) = \phi(x_1, x_2), \quad Z' = p(x_2)Z
\]

Conditioning: General Case

For a general MRF, we can apply the same reasoning to **reduce every factor** by hard-coding the evidence variables.
Factor Reduction: Example

Query: $P(Y_1, Y_2 \mid X_1=0, X_2=1)$

Factor Reduction: Step 1

Query: $P(Y_1, Y_2 \mid X_1=0, X_2=1)$

Factor Reduction: Step 2

Query: $P(Y_1, Y_2 \mid X_1=0, X_2=1)$

Query: $P(Y_1, Y_2 \mid X_1=0, X_2=1)$ $\propto \Phi_2(Y_1) \Phi_2(Y_2)$
Factor Reduction: General Algorithm

Suppose $p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c)$ and we observe $X_i = x_i$ for a single node i. We obtain a new MRF for $p(x_{-i}|x_i)$ by the following procedure:

For each factor ϕ_c such that $i \in c$ is non-empty

- Replace $\phi_c(x_c)$ by $\phi'_c(x_{c \backslash i}) := \phi_c(x_{c \backslash i}, x_i)$
- The $x_{c \backslash i}$ variables remain “free”, and x_i is hard-coded

To condition on many variables, we can repeat this procedure. Since order doesn’t matter, we can hard-code all evidence variables in each factor at the same time.

Next time, we’ll study marginalization, which is the process of summing over some variables to get the marginal distribution over others or the partition function.