

Review Examples Inference: Conditioning Preview

COMPSCI 688: Probabilistic Graphical Models
 Lecture 7: Undirected Graphical Models: Examples and Inference

Dan Sheldon

Manning College of Information and Computer Sciences
 University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 30

Review Examples Inference: Conditioning Preview

Review

2 / 30

Review Examples Inference: Conditioning Preview

Markov Random Fields

A Markov random is a distribution that factors over a set of “cliques” \mathcal{C} :

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c), \quad Z = \sum_{\mathbf{x}} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c)$$

The *dependence graph* $\mathcal{G} = (V, E)$ is the graph where nodes i and j are connected by an edge if they appear together in some factor.

We say that $p(\mathbf{x})$ *factors* over \mathcal{G} , and denote this property as (F).

3 / 30

Review Examples Inference: Conditioning Preview

Markov Properties

The *global Markov property* (G) connects conditional independence to graph separation.

Distribution $p(\mathbf{x})$ satisfies the global Markov property with respect to \mathcal{G} if

$$\text{sep}_{\mathcal{G}}(A, B|S) \implies \mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S \quad (G)$$

There are two other Markov properties (*local* and *pairwise*) implied by the global Markov property.

4 / 30

Review Examples Inference: Conditioning Preview

Factorization and Markov Properties

It's easy to show that factorization implies Markov: $(F) \Rightarrow (G)$.

There is a famous partial converse. For a *positive* distribution: $(G) \Rightarrow (F)$

Theorem (Hammersley-Clifford). If $p(\mathbf{x}) > 0$ for all \mathbf{x} , then $(F) \iff (G)$

5 / 30

Review Examples Inference: Conditioning Preview

Examples

6 / 30

Review Examples Inference: Conditioning Preview

Example: Ising Model

- \mathcal{G} is a lattice and $X_i \in \{-1, 1\}$
- Have unary potential β_i for each node i and pairwise potential β_{ij} for each edge (i, j)

$$p(\mathbf{x}) = \frac{1}{Z} \prod_i \beta_i(x_i) \prod_{(i,j) \in E} \beta_{ij}(x_i, x_j)$$

$$\beta_i(x_i) = \exp(b_i x_i)$$

$$\beta_{ij}(x_i, x_j) = \exp(b_{ij} x_i x_j)$$

- $b_i > 0 \implies X_i$ likes to be positive
- $b_{ij} > 0 \implies X_i$ and X_j like to be the same

Diagram of a 4x4 lattice with nodes x_i and edges β_{ij} labeled. Handwritten annotations show unary potential $\beta_i(x_i)$ and pairwise potential $\beta_{ij}(x_i, x_j)$ for specific nodes and edges. Brackets indicate $x_i = 1$ and $x_i = -1$ for unary potential, and $x_i = x_j$ and $x_i \neq x_j$ for pairwise potential.

7 / 30

Review Examples Inference: Conditioning Preview

Example: Ising Model

- In general, Markov networks can be seen as expressing preferences for certain local configurations of the variables.
- Joint configurations with high probability balance the preferences of all factors.

Diagram of a 4x4 lattice with nodes x_i and edges β_{ij} labeled. The lattice is shown with alternating red and blue edges, representing different configurations or preferences.

8 / 30

Review Examples Inference: Conditioning Preview

Example: Simulating an Ising Model

Demo: Ising Model

$$p(\mathbf{x}) = \frac{\exp\left(\frac{1}{T} \sum_{(i,j) \in E} x_i x_j\right)}{Z} = \frac{1}{2} \prod_{(i,j) \in E} \exp\left(\frac{1}{T} x_i x_j\right)$$

9 / 30

Review Examples Inference: Conditioning Preview

Example: Statistical Image Models

The Ising model with $b_{ij} > 0$ prefers smoothness, and can be used as a model for images in denoising procedures:

original image noisy image reconstructed image

10 / 30

Review Examples Inference: Conditioning Preview

Example: Image Denoising

$y_i \in \{0, \dots, 255\}$ unknown true pixel values

$x_i \in \{0, \dots, 255\}$ observed noisy pixel value

$$\Rightarrow \text{dist. } p(\vec{x}, \vec{y}) = \frac{1}{2} \sum_{(i,j) \in E} \Phi(y_i, y_j) \cdot \prod_{i \in V} \Psi(x_i, y_i)$$

11 / 30

Review Examples Inference: Conditioning Preview

denoise; observe \mathbf{x} , sample from or maximize $p(\vec{y} | \vec{x})$

clean \uparrow noisy

Design process: potentials $\Phi(x_i, x_j)$
 $\Psi(x_i, y_i)$

12 / 30

Review Examples Inference: Conditioning Preview

oooo Examples oooooooo●oooo Inference: Conditioning oooooooo Preview oo

Example: Data Privacy $p(m, s, E, R, H, wc, B, I)$

In differential privacy, graphical models are used to model a data set and generate synthetic data from privacy-preserving measurements.¹

marginals = [('marital-status', 'sex'),
 ('education-num', 'race'),
 ('sex', 'hours-per-week'),
 ('workclass',),
 ('marital-status', 'occupation', 'income>50K')]

MEASURE the marginals and log the noisy answers
 measurements <- noise-perturbed marginals (for privacy)

GENERATE synthetic data using PGM
 engine = FactoredInference(data.domain, iters=2500)
 model = engine.estimate(measurements)
 synth = model.synthetic_data()

¹Example from <https://differentialprivacy.org/synth-data-1>.

13 / 30

Review Examples Inference: Conditioning Preview

oooo Examples oooooooo●oooo Inference: Conditioning oooooooo Preview oo

Conditional Random Fields

The image denoising model was an example of a **conditional random fields** (CRFs), a very important model class in machine learning. A CRF is essentially a Markov network where one set of nodes is always conditioned on.

Adj: N² v_i
 Y₁ — Y₂ — Y₃ — Y₄
 X₁ — X₂ — X₃ — X₄
 British airways rose — word tokens

POS

Y₁₁ — Y₁₂ — Y₁₃
 Y₂₁ — Y₂₂ — Y₂₃
 Y₃₁ — Y₃₂ — Y₃₃
 X₁₁ — X₁₂ — X₁₃
 X₂₁ — X₂₂ — X₂₃
 X₃₁ — X₃₂ — X₃₃

The y nodes are *labels*, and the x nodes are *features*.

14 / 30

Review Examples Inference: Conditioning Preview

oooo Examples oooooooo●ooo Inference: Conditioning oooooooo Preview oo

Example: Image Segmentation

15 / 30

Review Examples Inference: Conditioning Preview

oooo Examples oooooooo●ooo Inference: Conditioning oooooooo Preview oo

Example: 3D Mesh Segmentation

16 / 30

Example: Bayes Nets as MRFs

$$\begin{aligned} p(a, b, c, d) &= p(a)p(b)p(c|a, b)p(d|c) \\ &= \phi_1(a)\phi_2(b)\phi_3(a, b, c)\phi_4(c, d) \end{aligned}$$

Example: Bayes Nets as MRFs

Some structure is lost in this transformation. When we replace $p(a|b, c)$ by $\phi(a, b, c)$, we “forget” that a Bayes net is **locally normalized**

$$\sum_a \phi(a, b, c) = 1 \quad \forall b, c.$$

This is a special property of Bayes nets and is central to V-structures, explaining away, and D-separation. It occurs “internally” to the factor $\phi(a, b, c)$ and is not represented in the MRF graph structure.

Similarly, when we replace $\prod_i p(x_i|x_{pa(i)})$ by $\frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c)$, we “forget” that a Bayes net is **globally normalized**:

$$\sum_x \prod_{c \in \mathcal{C}} \phi_c(x_c) = 1 \implies Z = 1.$$

This is another special property of Bayes nets that makes learning easy.