COMPSCI 688: Probabilistic Graphical Models

Lecture 7: Undirected Graphical Models: Examples and Inference
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Markov Random Fields Markov Properties
A Markov random is a distribution that factors over a set of “cliques™ C: The global Markov property (G) connects conditional indpendence to graph separation.
p(x) = — H be(xe0), Z= Z H be(xe) Distribution p(x) satisfies the global Markov property with respect to G if
z ceC X ceC
Sepg(A,B|S) = Xy 1 Xp |X5 (G)
The dependence graph G = (V, E) is the graph where nodes i and j are connected by
an edge if they appear together in some factor. There are two other Markov properties (local and pairwise) implied by the global Markov
roperty.
We say that p(x) factors over G, and denote this property as (F). property
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Factorization and Markov Properties
It's easy to show that factorization implies Markov: (F) = (G). Examples
There is a famous partial converse. For a positive distribution: (G) = (F)
Theorem (Hammersley-Clifford). If p(x) > 0 for all x, then (F) < (G)
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Example: Ising Model Example: Ising Model
> G is a lattice and X; € {—1,1}
» Have unary potential 3; for each node i and
airwise potential 3;; for each edge (i, j
P P . ge (1,7) > In general, Markov networks can be seen as
1 expressing preferences for certain local
p(x) = Z HM ('I‘ZIEE&J(%“ z5) configurations of the variables.
g ) 0 = =
© € =l | . , . I .
Bi(z;) = exp(b;jx;) A e © x=-] @ 00008 » Joint configurations with high probability
Bii(i, ;) = exp(bisziz;) ¢ | | balance the preferences of all factors.
ij\Li, Xj) = ij Vi - o
" | |
> b; >0 = X; likes to be positive &6+
> bi; >0 = X; and X like to be the el K=
same ©
€ X;# X §
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Example: Simulating an Ising Model

Demo: Ising Model
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Example: Statistical Image Models
The Ising model with b;; > 0 prefers smoothness, and can be used as a model for images
in denoising procedures:

original image reconstructed image

noisy image
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Example: Image Denoising '
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Example: Data Privacy P ST Conditional Random Fields
In differential privacy, graphical models are used to model a data set and generate . L. . .
. P 4 g P . 1 The image denoising model was an example of a conditional random fields (CRFs), a
synthetic data from privacy-preserving measurements. . . . . . .
S very important model class in machine learning. A CRF is essentially a Markov network
marginals = [('marital-status', 'sex'), P (/Vl 5) O\Q‘() where one set of nodes is always conditioned on.
('education-num', 'race'), (E R) ,q
('sex', 'hours-per-week'), (S H’) E ) ® @ @ e @ pOS
('workclass',), / .
)
('marital-status', 'occupation', 'income>50K')] @
® ® ® ® wd
# MEASURE the margjénals and log the TLoisy ansuers Bfl'{l-éh ﬂ\(f;’vdlu’e e fokensS
measurements <- noise-perturbed marginals (for privacy)
# GENERATE synthetic data using PGH
engine = FactoredInference(data.domain, iters=2500)
model = engine.estimate(measurements)
synth = model.synthetic_data() The y nodes are labels, and the x nodes are features.
'Example from https://differentialprivacy.org/synth-data-1.
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Example: Image Segmentation Example: 3D Mesh Segmentation
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Example: Bayes Nets as MRFs
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Example: Bayes Nets as MRFs

Some structure is lost in this transformation. When we replace p(alb, ¢) by ¢(a,b, c), we
“forget” that a Bayes net is locally normalized

> é(abe) =1 Vb,

This is a special property of Bayes nets and is central to V-structures, explaining away,

and D-separation. It occurs “internally” to the factor ¢(a,b, ¢) and is not represented in
the MRF graph structure.

Similarly, when we replace [T; p(zi|xpa(i)) by £ Tleec Ge(xc), we “forget” that a Bayes
net is globally normalized:

DIl telx) =1 = z=1.

z ceC

This is another special property of Bayes nets that makes learning easy.
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