Motivating Example

X_i = yield in cell i

Bayes net: unnatural

$X_i \perp \text{non-neighbors} | \text{neighbors}$

$X_i \perp X_8 | X_5$

if S separates A from B in G

$\text{sep}(A, B | S)$
Markov Properties for Undirected Graphical Model

Undirected graphical models are probability distributions that satisfy a set of conditional independence properties with respect to a dependence graph \mathcal{G}. Formally:

- Let $\mathcal{G} = (V, E)$ be a graph with nodes $V = \{1, \ldots, n\}$.
- For $A, B, S \subseteq V$, say that S separates A from B if all paths from A to B in \mathcal{G} go through S, written $\text{sep}_\mathcal{G}(A, B | S)$.

The joint distribution of random variables X_1, \ldots, X_n satisfies the global Markov property with respect to \mathcal{G} if

$$\text{sep}_\mathcal{G}(A, B | S) \implies X_A \perp X_B | X_S$$ (G)

What form of distribution $p(x_1, \ldots, x_n)$ has this property?

Warmup: Characterization of Conditional Independence

Recall the definition of conditional independence

$$p(x, y | z) = \frac{p(x,y,z)}{p(z)} \quad \text{iff} \quad p(x,y) = p(x) p(y | x)$$

for some p_1, p_2, p_3, p_4.

Today we’ll use two other properties of conditional independence:

1. $X \perp Y | Z \iff p(x, y, z) = p(x) p(y | x) p(z) \text{ for some } \phi_1, \phi_2$
2. $X \perp (Y, W) | Z \implies X \perp Y | Z$

Proofs: exercise

Note: (1) says that conditional independence holds iff the joint distribution factorizes in a certain way, which is very important.
Motivation

Markov Random Fields

A Markov random field is a probability distribution that factorizes over a set of "cliques" \(C \):

\[
p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c), \quad Z = \sum_{x \in \mathcal{X}} \prod_{c \in C} \phi_c(x_c)
\]

- Each \(c \subseteq V = \{1, \ldots, n\} \) is a set of indices, or "clique".
- The function \(\phi_c \) is a non-negative factor or potential. It only depends on \(x_i \) for \(i \in c \).
- We say it has scope \(c \) and define \(\text{Scope}(\phi_c) := c \)
- \(Z \) is the normalizing constant or "partition function"

Dependence Graph

The dependence graph \(G = (V, E) \) of the MRF \(p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c) \) is the graph where nodes \(i \) and \(j \) are connected by an edge if they appear together in some factor:

\[
V = \{1, \ldots, n\}, \quad E = \{(i, j) : i \in c \text{ and } j \in c \text{ for some } c \in C\}
\]

With this definition, every \(c \in C \) is a clique (fully connected set) in \(G \).

Concrete Example

\[
p(x_1, x_2, x_3) = \frac{1}{Z} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3)
\]

\[
\begin{array}{ccc}
 x_1 & x_2 & x_3 \\
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 2 \\
 1 & 2 & 1 \\
\end{array}
\]

\[
\phi_{12} = \begin{cases} 1 & \text{if } x_1 = x_2 \\ 0 & \text{otherwise} \end{cases}
\]

\[
\phi_{23} = \begin{cases} 1 & \text{if } x_2 = x_3 \\ 0 & \text{otherwise} \end{cases}
\]

Factorization and Markov Properties

\[
\phi_c = \text{factor or potential} \quad c = \text{Scope}(\phi_c) = \text{clique}_c
\]
Factorization

Let G be a graph. A distribution $p(x)$ factorizes with respect to G if

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c), \quad \mathcal{C} = \text{cliques}(G) \quad (F)$$

In other words, it is an MRF with dependence graph G.

As in Bayes nets, there is a close relationship between factorization and Markov properties obtained from graph separation.

Markov Properties

The global Markov property (G), the local Markov Property (L) and pairwise Markov property (P) are three different properties of a distribution that hold relative to a graph G.

$$\text{sep}_G(A, B|S) \implies X_A \perp X_B | X_S \quad (G)$$

$$i \in V \implies X_i \perp X_{V \setminus \text{nb}(i) \cup \{i\}} | X_{\text{nb}(i)} \quad (L)$$

$$(i, j) \notin E \implies X_i \perp X_j | X_{V \setminus \{i, j\}} \quad (P)$$

Above, $\text{nb}(i)$ is the set of neighbors of node i in G.

Claim: $(G) \implies (L) \implies (P)$

It’s easy to see $(G) \implies (L)$ and $(G) \implies (P)$ by taking the appropriate choices of A, B, S. We leave $(L) \implies (P)$ as an exercise.

Markov Property Examples
Factorization Implies Markov

Like in Bayes nets, factorization implies conditional independencies (Markov properties).

Claim: \(F \Rightarrow (G) \Rightarrow (L) \Rightarrow (P) \)

Proof ("by example"): We only need to show \((F) \Rightarrow (G) \).

Assume \(\text{sep}(A,B \mid S) \), more factors to "A" or "B" sides, use simple CI defn.

\[
p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} (x_c) \prod_{x \in \mathcal{V}} f(x) g(x)
\]

\[
x_i \perp x_j, x_k \mid x_s
\]

First, remove \(S \) from \(G \). The resulting graph is disconnected and has no paths from \(A \) to \(B \).

- Let \(\bar{A} \) be the union of all connected components containing a node from \(A \)
- Let \(\bar{B} = V \setminus \bar{A} \)

Then each \(c \in \mathcal{C} \) is a subset of either \(\bar{A} \cup S \) or \(\bar{B} \cup S \)

- Let \(\mathcal{C}_A \) be the cliques contained in \(\bar{A} \cup S \)
- Let \(\mathcal{C}_B \) be the cliques contained in \(\bar{B} \cup S \)
Then
\[p(x) = \prod_{c \in C_A} \phi_c(x_c) \prod_{c \in C_B} \phi_c(x_c) = h(x_A, x_S)k(x_B, x_S) \]
\[\implies X_A \perp X_B | X_S \]
\[\iff (X_A, X_{\tilde{A}}, A) \perp (X_B, X_{\tilde{B}}, B) | X_S \]
\[\implies X_A \perp X_B | X_S \]

Markov Implies Factorization: Hammersley-Clifford Theorem

There is a famous partial converse. For a positive distribution, (P) \(\Rightarrow \) (F), which implies all the conditions are equivalent:

Theorem (Hammersley-Clifford). If \(p(x) > 0 \) for all \(x \), then

\[(F) \iff (G) \iff (L) \iff (P). \]

The theorem holds for a very general class of distributions, e.g., ones with continuous, discrete, or both types of random variables.