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Markov Properties for Undirected Graphical Model - ;4 Hw due Mown
Grure Sae H
Undirected graphical models are probability distributions that satisfy a set of corfd?t‘lcin‘hﬁ
\ . .
independence properties with respect to a dependence graph G. Formally: ‘; - Ti (Au\cﬂu/eC{“wq %quh lc'”t\ wode[
> Let G = (V, E) be a graph with nodes V = {1,...,n} s )
» For A, B, S C V, say that S separates A from B |f all paths from A to B in g go Bo\{eg net MM
through S, written sepg (A, B|S). ~divected — udicected
The joint di§tribution of ranfiom variables X1, ..., X, satsifes the global Markov _ fackor (.2=\+:°w '—“\Cc\d'of'(‘znh’m ("P“Jff"‘"";\ls")
property with respect to G if (Zj
— Ko L X [X‘Mg) S Mevkoy preperties baged  an
sepg(A, B|S) = X4 L Xp|Xs (G) ~ d-sepav ovhon raph  separation
. — (vm{'\{-/eﬂ(
What form of distribution p(x1,...,x,) has this property? - [fO‘V'V‘("\S (eﬁ!\D -7-‘—.2
— ( oy nt n5 ( |/\<u"o( er)
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Warmup: Characterization of Conditional Independence Markov Random Field Example
(
Gi(%2) (17:(\//2) Example: p(z1, 22, 3, 24) = 12(@1, 2) P23 (2,@3) P34 (X3} 4) P14 (@1, 74) -
z
Recall the definition of conditional independence ~ ~ a1 "~ ]
e = PG ty1=) 5
X 1Y |Z < p(x,ylz) = p(x|z)p(y|z) ® &> Q = T@ %, @) - 3(‘6;"% %)
Today we'll use two other properties of conditional independence: @q @)3
L. X1Y|Z < p(x,y,2) = ¢1(x{2)d2(y(2) for some ¢1,¢2 7 O
2 X1 Y W) |Z = XLY|Z" @ @
¢) —— (N3
Proofs: exercise Py =>( Ky L%y , X, Yb
Note: (1) says that conditional independence holds iff the joint distribution factorizes in VR ’ Y (sgumnet
a certain way, which is very important. we %"‘Y“ et / 1 S<3 2 X«., 1 \D
st s-P:es Fhese
cTs
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A Markov random field is a probability distribution that factorizes over a set of “cliques”
C:

o) = 5 [ oetx), 7= 3 [Loelx)

Markov Random Fields p(w=,><sﬁ<7)cé B, ) Pan (%, %, %) 05, (5, %)
c= j 2% 33

Concrete Example é: [% 30,>3, %}/3%
p(%,,%s, xa) == CD‘l[x,J ) ¢>3(?<>,3<3>
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X(' S §O) /3

K Xy Xy 4’15' <b>’-> f(X' 'y')>%>
B P TIPS O T
X, Xy G X, ¥y Pos © o o [.1=1 V8
ceC x ceC 'P()(,J)C_,/}(r> o 0 o o \ O o r [ 0= /18
mhnc)dvn&\'fzc' preb, _ e a2fie
» Each ¢ CV ={1,...,n} is a set of indices, or “clique” §'°P9 (‘P)“ ?(/ 5‘/5% < 2 o 1 ! o e > 2 /‘
» The function ¢, is a non-negative factor or potential. It only depends on x; for l 2 o o | ] 2-2=Y :
i E.C. We say it. has scope c and gefln.e .Scope(zz)c.) : c | . | | o (o o 1-l=2 ‘
» 7 is the normalizing constant or “partition function ‘
[ (V) f 2 1=
o S} 2.1 =2
[ ] )2 =Y "F/I%'
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Dependence Graph

The dependence graph G = (V, E) of the MRF p(x) = % [Teec ¢c(xc) is the graph

where nodes i and j are connected by an edge if they appear together in some factor:

V={l...,n}, E={(,j):i€candjecforsomeceC}

With this definition, every ¢ € C is a clique (fully connected set) in G.

Pk, Xs, x,/\g.,) = d;{z(xuxg cjjnq(xij K—,/X,_,> q:)%(xb%,) ’{2—
M\J
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Factorization 7 Fhot s ﬁl/y Markov Properties  p(% ..., % ] [ B ¢

Let G be a graph. A distribution p(x) factorizes with respectto G if (cnmected

px)= [T 6.t € = cliaues(®) G)

In other words, it is an MRF with dependence graph G.

As in Bayes nets, there is a close relationship between factorization and Markov
properties obtained from graph separation.

p(ku“z, *s,“u\ = Cp{,_\?(K,JX>J X’b q>1‘3L1 (XSJ X3)7&,> % \
C- 53 33383 SANPS
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The global Markov property (G), the local Markov Property (L) and pairwise Markov
property (P) are three different properties of a distribution that hold felative to a graph

g. euel A-L—;‘BM‘?':U%
3 sepg(A, B|S) = X4 L X5 | Xs (G)
i€V = X; L X\ (moyufip) | b (L)
. T— (1,J) ¢ E = Xi L X; | Xy\ij) (P)

Above, nb(i) is the set of neighbors of node i in G.
Claim: (G) = (L) = (P)

It's easy to see (G) = (L) and (G) = (P) by taking the appropriate choices of A, B, S.
We leave (L) = (P) as an exercise.
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Factorization Implies Markov

G(x2) Py, 2)
Like in Bayes nets, factorization implies conditional independencies (Markov properties).
Claim: (F) = (G) = (L) = (P)
Proof (“by example”): We only need to show (F) = (G).
Assuwe (F) . plo= “L.Z‘cb,ag(x,;ﬁ,ﬁ(,) cbﬁq(\(zijsg) @s(n} X;)
N
= x,m)*a) 7@, %5)
=K L (%) K, Ky
=2 X L% %, %
Wont: SZPC,(A/BIS> == % L | %s
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Factorization Implies Markov Proof

Suppose p(x) = [I.cc Pc(%c) (assume 1/Z is included in one of the factors) and
sepg (A, B; S). We'll show that X4 L Xp | Xg.

First, remove S from G. The resulting graph is disconnected and has no paths from A
to B
> Let A: be the union of all connected components containing a node from A
»Llet B=V\4
Then each ¢ € C is a subset of either AUS or BUS

> Let C4 be the cliques contained in /:1 us
> Let Cp be the cliques contained in BU S
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Then
p(x) = H bo(xc) H de(xc) = h(x 4,x5)k(xp,Xs)

ceCxp ceCp
- XA 1 XB ‘ Xg
= (Xa, Xq4) L (X5, Xpp) | Xs
= X4 L Xp|Xs
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Markov Implies Factorization: Hammersley-Clifford Theorem
px) 70 ¥ %
5

There is a famous partial converse. For a positive distribution, (P) = (F), which implies
all the conditions are equivalent:

Theorem (Hammersley-Clifford). for all x, then

(F) = (6) = (L) < (P)

The theorem holds for a very general class of distributions, e.g., ones with continuous,
discrete, or both types of random variables.
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