

Motivation ○○○	Markov Random Fields ○○○○○	Factorization and Markov Properties ○○○○○○○○○○	Motivation ●○○	Markov Random Fields ○○○○○	Factorization and Markov Properties ○○○○○○○○○○
-------------------	-------------------------------	---	-------------------	-------------------------------	---

COMPSCI 688: Probabilistic Graphical Models
 Lecture 6: Undirected Graphical Models

Dan Sheldon
 Manning College of Information and Computer Sciences
 University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 22

Motivation ○○○	Markov Random Fields ○○○○○	Factorization and Markov Properties ○○○○○○○○○○	Motivation ○○○	Markov Random Fields ○○○○○	Factorization and Markov Properties ○○○○○○○○○○
-------------------	-------------------------------	---	-------------------	-------------------------------	---

Motivating Example

$X_i = 1$ if invasive species in cell i

Bayes net?

$X_A \perp X_B \mid X_S ?$

3 / 22

Motivation
○○○

Markov Random Fields
○○○○○

Factorization and Markov Properties
○○○○○○○○○○

Motivation
○○○○

Markov Random Fields
●○○○○

Factorization and Markov Properties
○○○○○○○○○○

Markov Properties for Undirected Graphical Model

Undirected graphical models are probability distributions that satisfy a set of conditional independence properties with respect to a *dependence graph* \mathcal{G} . Formally:

- Let $\mathcal{G} = (V, E)$ be a graph with nodes $V = \{1, \dots, n\}$
- For $A, B, S \subseteq V$, say that S separates A from B if all paths from A to B in \mathcal{G} go through S , written $\text{sep}_{\mathcal{G}}(A, B|S)$.

The joint distribution of random variables X_1, \dots, X_n satisfies the **global Markov property** with respect to \mathcal{G} if

$$\text{sep}_{\mathcal{G}}(A, B|S) \implies \mathbf{X}_A \perp \mathbf{X}_B | \mathbf{X}_S \quad (G)$$

What form of distribution $p(x_1, \dots, x_n)$ has this property?

HW due Mon
Quiz due Fri

Undirected graphical models

Bayes nets
- directed
- factorization
- $X_i \perp X_{\text{nd}(i)} | X_{\text{pa}(i)}$
- d -separation
- learning (easy)

Markov Random Fields
- undirected
- factorization ("potentials")
- Markov properties based on graph separation
- inference
- learning (harder)

5 / 22

6 / 22

Motivation
○○○

Markov Random Fields
○○○○○

Factorization and Markov Properties
○○○○○○○○○○

Motivation
○○○○

Markov Random Fields
●○○○○

Factorization and Markov Properties
○○○○○○○○○○

Warmup: Characterization of Conditional Independence

Recall the definition of conditional independence

$$p(x, y|z) = p(z)p(x|z)p(y|z)$$

$$\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff p(\mathbf{x}, \mathbf{y} | \mathbf{z}) = p(\mathbf{x} | \mathbf{z})p(\mathbf{y} | \mathbf{z})$$

Today we'll use two other properties of conditional independence:

- $\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \phi_1(\mathbf{x}, \mathbf{z})\phi_2(\mathbf{y}, \mathbf{z})$ for some ϕ_1, ϕ_2
- $\mathbf{X} \perp (\mathbf{Y}, \mathbf{W}) | \mathbf{Z} \implies \mathbf{X} \perp \mathbf{Y} | \mathbf{Z}$

Proofs: exercise

Note: (1) says that conditional independence holds iff the joint distribution factorizes in a certain way, which is very important.

Markov Random Field Example

Example: $p(x_1, x_2, x_3, x_4) = \phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)\phi_{34}(x_3, x_4)\phi_{14}(x_1, x_4) \cdot \frac{1}{Z}$

$$= f(x_1, x_2, x_3) \cdot g(x_2, x_3, x_4)$$

$x_3 \perp x_4 | x_1$? NO

no Bayes net satisfies these CIs

$x_2 \perp x_4 | x_1, x_3$

$x_1 \perp x_3 | x_2, x_4$ (symmetry)

7 / 22

8 / 22

Motivation
oooo

Markov Random Fields
oooo●oo

Factorization and Markov Properties
oooooooooooo

Markov Random Fields $p(x_1, x_2, x_3, x_4) = \frac{1}{Z} \phi_{12}(x_1, x_2) \phi_{123}(x_1, x_2, x_3) \phi_{24}(x_2, x_4)$

$C = \{1, 2, 3\}$ $C = \{\{1, 2, 3\}, \{1, 2, 3\}, \{3, 4\}\}$

$X_C = (x_1, x_2, x_3)$

A Markov random field is a probability distribution that factorizes over a set of "cliques" C :

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in C} \phi_c(\mathbf{x}_c), \quad Z = \sum_{\mathbf{x}} \prod_{c \in C} \phi_c(\mathbf{x}_c)$$

unnormalized prob. $f(x_1, x_2, x_3, x_4)$

Each $c \subseteq V = \{1, \dots, n\}$ is a set of indices, or "clique" $\text{Scope}(f) = \{1, 2, 3, 4\}$

The function ϕ_c is a non-negative *factor* or *potential*. It only depends on x_i for $i \in c$. We say it has *scope* c and define $\text{Scope}(\phi_c) := c$

Z is the normalizing constant or "partition function"

9 / 22

Motivation
oooo

Markov Random Fields
oooo●oo

Factorization and Markov Properties
oooooooooooo

Concrete Example

$C = \{\{1, 2\}, \{2, 3\}\}$ $x_i \in \{0, 1\}$

$p(x_1, x_2, x_3) = \frac{1}{Z} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3)$

x_1	x_2	x_3	ϕ_{12}	ϕ_{23}	$p(x_1, x_2, x_3)$
0	0	0	1	1	1 / 18
0	0	1	1	1	1 / 18
0	1	0	1	2	2 / 18
0	1	1	1	2	2 / 18
1	0	0	1	1	2 / 18
1	0	1	1	2	2 / 18
1	1	0	2	1	2 / 18
1	1	1	2	2	4 / 18
					18

10 / 22

Motivation
oooo

Markov Random Fields
oooo●oo

Factorization and Markov Properties
oooooooooooo

Dependence Graph

The *dependence graph* $\mathcal{G} = (V, E)$ of the MRF $p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in C} \phi_c(\mathbf{x}_c)$ is the graph where nodes i and j are connected by an edge if they appear together in some factor:

$V = \{1, \dots, n\}, \quad E = \{(i, j) : i \in c \text{ and } j \in c \text{ for some } c \in \mathcal{C}\}$

With this definition, every $c \in \mathcal{C}$ is a clique (fully connected set) in \mathcal{G} .

$p(x_1, x_2, x_3, x_4) = \phi_{12}(x_1, x_2) \phi_{234}(x_2, x_3, x_4) \phi_{34}(x_3, x_4) \frac{1}{Z}$

$\phi_{234}(x_2, x_3, x_4)$

11 / 22

Motivation
oooo

Markov Random Fields
●oooooooooooo

Factorization and Markov Properties
●oooooooooooo

Factorization and Markov Properties

12 / 22

Motivation
oooo

Markov Random Fields
oooooo

Factorization and Markov Properties
oooooooooooo

Factorization

Let \mathcal{G} be a graph. A distribution $p(\mathbf{x})$ factorizes with respect to \mathcal{G} if

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c), \quad \mathcal{C} = \text{cliques}(\mathcal{G}) \quad (\text{F})$$

subset of nodes that is fully connected

In other words, it is an MRF with dependence graph \mathcal{G} .

As in Bayes nets, there is a close relationship between factorization and Markov properties obtained from graph separation.

$p(x_1, x_2, x_3, x_4) = \phi_{123}(x_1, x_2, x_3) \phi_{234}(x_2, x_3, x_4) \cdot \frac{1}{2}$

$\mathcal{C} = \{\{1, 2, 3\}, \{2, 3, 4\}\}$

13 / 22

Motivation
oooo

Markov Random Fields
oooooo

Factorization and Markov Properties
oooooooooooo

Markov Properties

$p(x_1, \dots, x_n)$

The global Markov property (G), the local Markov Property (L) and pairwise Markov property (P) are three different properties of a distribution that hold relative to a graph \mathcal{G} .

every $A \rightarrow B$ path hits S

$\text{sep}_{\mathcal{G}}(A, B | S) \implies \mathbf{X}_A \perp \mathbf{X}_B | \mathbf{X}_S$ (G)

$i \in V \implies X_i \perp \mathbf{X}_{V \setminus (\text{nb}(i) \cup \{i\})} | \mathbf{X}_{\text{nb}(i)}$ (L)

$(i, j) \notin E \implies X_i \perp X_j | \mathbf{X}_{V \setminus \{i, j\}}$ (P)

Above, $\text{nb}(i)$ is the set of neighbors of node i in \mathcal{G} .

Claim: (G) \Rightarrow (L) \Rightarrow (P)

It's easy to see (G) \Rightarrow (L) and (G) \Rightarrow (P) by taking the appropriate choices of A, B, S . We leave (L) \Rightarrow (P) as an exercise.

14 / 22

Motivation
oooo

Markov Random Fields
oooooo

Factorization and Markov Properties
oooo•oooooooooooo

Markov Property Examples

15 / 22

Motivation
oooo

Markov Random Fields
oooooo

Factorization and Markov Properties
oooo•oooooooooooo

Markov Property Examples

16 / 22

Factorization Implies Markov

$$\Phi(x, z) \Phi(y, z) \quad x \perp y \mid z$$

Like in Bayes nets, factorization implies conditional independencies (Markov properties).

Claim: $(F) \Rightarrow (G) \Rightarrow (L) \Rightarrow (P)$

Proof ("by example"): We only need to show $(F) \Rightarrow (G)$.

Assume (F). $p(x) = \frac{1}{Z} \phi_{123}(x_1, x_2, x_3) \phi_{234}(x_2, x_3, x_4) \phi_{45}(x_4, x_5)$

$$G = \begin{array}{c} \text{A} \\ \boxed{1} \quad \boxed{2} \\ \boxed{3} \end{array} \quad \begin{array}{c} \text{B} \\ \boxed{4} \quad \boxed{5} \end{array}$$

$$\begin{aligned} &= f(x_1, x_2, x_3) g(x_2, x_3, x_4, x_5) \\ &\Rightarrow x_1 \perp (x_4, x_5) \mid x_2, x_3 \\ &\Rightarrow x_1 \perp x_5 \mid x_2, x_3 \end{aligned}$$

Want: $\text{sep}_G(A, B \mid S) \Rightarrow x_1 \perp x_5 \mid x_2, x_3$

17 / 22

Factorization Implies Markov Proof

Factorization Implies Markov Proof

Suppose $p(x) = \prod_{c \in \mathcal{C}} \phi_c(x_c)$ (assume $1/Z$ is included in one of the factors) and $\text{sep}_G(A, B; S)$. We'll show that $\mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S$.

First, remove S from G . The resulting graph is disconnected and has no paths from A to B

- ▶ Let \tilde{A} be the union of all connected components containing a node from A
- ▶ Let $\tilde{B} = V \setminus \tilde{A}$

Then each $c \in \mathcal{C}$ is a subset of either $\tilde{A} \cup S$ or $\tilde{B} \cup S$

- ▶ Let \mathcal{C}_A be the cliques contained in $\tilde{A} \cup S$
- ▶ Let \mathcal{C}_B be the cliques contained in $\tilde{B} \cup S$

19 / 22

18 / 22

20 / 22

Then

$$\begin{aligned}
 p(\mathbf{x}) &= \prod_{c \in \mathcal{C}_A} \phi_c(\mathbf{x}_c) \prod_{c \in \mathcal{C}_B} \phi_c(\mathbf{x}_c) = h(\mathbf{x}_{\tilde{A}}, \mathbf{x}_S) k(\mathbf{x}_{\tilde{B}}, \mathbf{x}_S) \\
 &\implies \mathbf{x}_{\tilde{A}} \perp \mathbf{x}_{\tilde{B}} \mid \mathbf{x}_S \\
 &\iff (\mathbf{x}_A, \mathbf{x}_{\tilde{A} \setminus A}) \perp (\mathbf{x}_B, \mathbf{x}_{\tilde{B} \setminus B}) \mid \mathbf{x}_S \\
 &\implies \mathbf{x}_A \perp \mathbf{x}_B \mid \mathbf{x}_S
 \end{aligned}$$

Markov Implies Factorization: Hammersley-Clifford Theorem

$$p(\mathbf{x}) > 0 \quad \forall \mathbf{x}$$

There is a famous partial converse. For a *positive* distribution, (P) \Rightarrow (F), which implies all the conditions are equivalent:

Theorem (Hammersley-Clifford). If $p(\mathbf{x}) > 0$ for all \mathbf{x} , then

$$(F) \iff (G) \iff (L) \iff (P).$$

The theorem holds for a very general class of distributions, e.g., ones with continuous, discrete, or both types of random variables.