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Markov Properties for Undirected Graphical Model

Undirected graphical models are probability distributions that satisfy a set of conditional
independence properties with respect to a dependence graph G. Formally:

I Let G = (V,E) be a graph with nodes V = {1, . . . , n}
I For A,B, S ™ V , say that S separates A from B if all paths from A to B in G go

through S, written sepG(A,B|S).

The joint distribution of random variables X1, . . . ,Xn satsifes the global Markov
property with respect to G if

sepG(A,B|S) =∆ XA ‹ XB | XS (G)

What form of distribution p(x1, . . . , xn) has this property?
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Warmup: Characterization of Conditional Independence

Recall the definition of conditional independence

X ‹ Y | Z ≈∆ p(x,y|z) = p(x|z)p(y|z)

Today we’ll use two other properties of conditional independence:

1. X ‹ Y | Z ≈∆ p(x,y, z) = „1(x, z)„2(y, z) for some „1, „2
2. X ‹ (Y,W) | Z =∆ X ‹ Y|Z

Proofs: exercise

Note: (1) says that conditional independence holds i� the joint distribution factorizes in
a certain way, which is very important.
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Markov Random Field Example
Example: p(x1, x2, x3, x4) = „12(x1, x2)„23(x2, x3)„34(x3, x4)„14(x1, x4)
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Markov Random Fields

A Markov random field is a probability distribution that factorizes over a set of “cliques”
C:

p(x) = 1
Z

Ÿ

cœC
„c(xc), Z =

ÿ

x

Ÿ

cœC
„c(xc)

I Each c ™ V = {1, . . . , n} is a set of indices, or “clique”
I The function „c is a non-negative factor or potential. It only depends on xi for
i œ c. We say it has scope c and define Scope(„c) := c

I Z is the normalizing constant or “partition function”
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Concrete Example
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Dependence Graph
The dependence graph G = (V,E) of the MRF p(x) = 1

Z

r
cœC „c(xc) is the graph

where nodes i and j are connected by an edge if they appear together in some factor:

V = {1, . . . , n}, E = {(i, j) : i œ c and j œ c for some c œ C}

With this definition, every c œ C is a clique (fully connected set) in G.

11 / 22

Motivation Markov Random Fields Factorization and Markov Properties

Factorization and Markov Properties

12 / 22



Motivation Markov Random Fields Factorization and Markov Properties

Factorization
Let G be a graph. A distribution p(x) factorizes with respect to G if

p(x) = 1
Z

Ÿ

cœC
„c(xc), C = cliques(G) (F)

In other words, it is an MRF with dependence graph G.

As in Bayes nets, there is a close relationship between factorization and Markov
properties obtained from graph separation.
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Markov Properties
The global Markov property (G), the local Markov Property (L) and pairwise Markov
property (P) are three di�erent properties of a distribution that hold relative to a graph
G.

sepG(A,B|S) =∆ XA ‹ XB | XS (G)
i œ V =∆ Xi ‹ XV \(nb(i)fi{i}) | Xnb(i) (L)

(i, j) /œ E =∆ Xi ‹ Xj | XV \{i,j} (P)

Above, nb(i) is the set of neighbors of node i in G.

Claim: (G) ∆ (L) ∆ (P)

It’s easy to see (G) ∆ (L) and (G) ∆ (P) by taking the appropriate choices of A, B, S.
We leave (L) ∆ (P) as an exercise.
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Factorization Implies Markov
Like in Bayes nets, factorization implies conditional independencies (Markov properties).

Claim: (F) ∆ (G) ∆ (L) ∆ (P)

Proof (“by example”): We only need to show (F) ∆ (G).
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Factorization Implies Markov Proof

18 / 22

Motivation Markov Random Fields Factorization and Markov Properties

19 / 22

Motivation Markov Random Fields Factorization and Markov Properties

Factorization Implies Markov Proof
Suppose p(x) = r

cœC „c(xc) (assume 1/Z is included in one of the factors) and
sepG(A,B;S). We’ll show that XA ‹ XB | XS .

First, remove S from G. The resulting graph is disconnected and has no paths from A
to B

I Let Ã be the union of all connected components containing a node from A
I Let B̃ = V \ Ã

Then each c œ C is a subset of either Ã fi S or B̃ fi S

I Let CA be the cliques contained in Ã fi S
I Let CB be the cliques contained in B̃ fi S
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Then
p(x) =

Ÿ

cœCA
„c(xc)

Ÿ

cœCB
„c(xc) = h(xÃ,xS)k(xB̃,xS)

=∆ XÃ ‹ XB̃ | XS

≈∆ (XA,XÃ\A) ‹ (XB,XB̃\B) | XS

=∆ XA ‹ XB | XS
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Markov Implies Factorization: Hammersley-Cli�ord Theorem

There is a famous partial converse. For a positive distribution, (P) ∆ (F), which implies
all the conditions are equivalent:

Theorem (Hammersley-Cli�ord). If p(x) > 0 for all x, then

(F) ≈∆ (G) ≈∆ (L) ≈∆ (P).

The theorem holds for a very general class of distributions, e.g., ones with continuous,
discrete, or both types of random variables.
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