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Example: Bayesian Network Graph Example: Conditional Probability Table
P(G) P(C) P(BP) P(I)
@ HD G BP C P(HD|G,BP,C)
No M Low Low 0.95
Yes M Low Low 0.05
No F Low Low 0.99
P(HDI|G,C,BP) (HeartDisease P(A[D) Yes F Low Low 0.01
Shortness
P(CP|HD,A) @ P(SBJA)
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HD G BP C P(HD|G,BP,C)
The default parameterization in a discrete Bayesian network simply uses a separate HD
P _ Y Ply P No M Low Low ONfLLL
parameter for each element of each CPT: v ML L gHD
es ow Low QM’L‘L
No F Low Low ON"%L L
X \L,
BPy(X =2|Xpax)=y) =07y Yes F Low Low oD, L
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Today's Problem Example: Smoker and Cancer
» How do we choose the parameter values for a Bayesian network given a data set?
» The maximum likelihood estimate for ﬁfl is just the number of times X takes
value & when its parents take value y, divided by the number of times its parents
take the value y:
#X=2,Y=Yy)
Py(X =z]Y =Yy) =08 =" = 77
i #(Y =y)
How can we derive this result?
7/29 8/29




Estimation MLE Examples
©00000 0000

Estimation MLE Examples
080000 0000

esian Networks

Maximum-Likelihood Estimation (MLE)

A parametric model {pg|0 € ©} is a family of probability distributions indexed by

. . parameters 0
Estimation
Given data x1, ..., x™) how do we choose py? (Notation: x(® = (z{™, ... ,x&")))
Principle of maximum likelihood: choose the distribution that assigns the highest
probability to the data
Bernoulli code demo
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Maximum-Likelihood Estimation (MLE) Example: Bernoulli Model
Suppose 21, 2@ ... () are drawn from a Bernoulli distribution:
For an observed value x, the log-likelihood is 1-6, z=0
Po(e) =14, P
L(0]x) = log py(x) ’
For a data set x(1N) = (x(M) ... x(N)) the log-likelihood is The log-likelihood s
1N
N (1:N) - (n)
) 1 L(0|x )= log pg(z'™)
LOXY) = 5 3 logpa(x™) P>
n=1 N
1
=52 (12 = 0] log(1 — ) + [z = 1] log )
Goal: find 6 to maximize £(0x1) n=1
#(X =0) #X =1)
= ——log(l — — 1 .
N og(l—6)+ N og0
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Learning as Likelihood Maximization

How can we find the model parameters 6 that maximize the likelihood?

» The derivative of a function is zero
at every local maximum

F(x)

» Zero derivative points are not local
maxima in general.

» To be a local maximum, the
curvature must be negative
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Maximum Likelihood and Optimization

How can we find the model parameters 6 that maximize the likelihood?
» Compute the (partial) derivatives of the log likelihood
» Set them equal to zero
» Solve derivative equations for the parameters

> (Determine which solutions are local maxima by checking second derivatives)
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Example: Bernoulli Parameter Learning
The maximum likelihood estimates for the simple Bernoulli model are easy to derive:
. X =0) #(X =1)
v L) = EE =00 g FE =D,
MLE Examples Ola™) = T losl1 = 6) + g log
. X=1 X=0
> 7£(9|I(IN)) _ #( ) _ #( )
00 No N(1-6)
» Setting the derivative equation equal to zero and solving yields the maximum
likelihood estimate:
,_ #X=1)
N
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Example: Multinomial Model

Consider a Multinomial model for a discrete random variable X that takes V' values
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Example: Multinomial Parameter Learning

{1,..,V}. = #X =V =
£(0)zN) Z 10g(0 )+ % log <1 - Z Gv)
v=1 v=1
0 z=1 > Setting the partial derivatives to zero, we require, for each i < V:
RO P , #(X =) #(X =V)
po(z) = 201z = _ -
Ov_1 x=V-1 g agi£(9|r ) Nb; N1-V"l6,)
1=30 b =V > It's easy to check that this is solved by setting
Then
1 N V-1 0, — #(X =1)
£(6)zN) Z <Z Iz = v]log(6,) + I[z™ = V]log (1 - 9)) N
nzl v=1 v=1
V-1 V-1
#(X =v) #X =V)
= N lOg(ev) +—— 1Og 1- 91)
v=1 N N ( UZ::I ) 17/29 18/29
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Bayesian Network Parameters

In a Bayesian network, each CPT is a collection of multinomial distributions with
distinct parameters. There is one multinomial distribution for each joint setting of the
parents of each variable.

HD G BP C P(HD|G,BP,C)
No M Low Low Hﬁﬁ/[ L
Yes M Low Low 9{,‘(@[ IL
No F Low Low ONFLL
Yes F Low Low 9{}@ L

log P(HD = h|G = g,BP = b,C = ¢) = log 631, .
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Joint Probability in Terms of Parameters

The joint probability in a Bayesian network is a product of conditional multinomial
distribution for each node:

D

Po(TalXpaa)) = i

Ta|Xpa(d)

o

po(x) =
d

1

= log-likelihood is a sum of terms:
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Log Likelihood Decomposition

The log likelihood of a dataset x(1¥) for a Bayesian network decomposes into a sum of
terms that depend only on the parameters for one conditional distribution:

L(0]x1N)) =

Z\H
M=

—
IS

D
Zlogo (")I (n)

n =1 Pa(d)

M=

D
SO0 X g = waxity) = Xpa(a) o5 %ot

[
Mo Z\H

n=ld=1 Td Xpa(d)
lng9 Z 10g Td\xpa(d) Z Xd = %d, Xpa(d) - xPa(d>) log9
N Za|Xpa(a)
d=1 Td Tpa(d)
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Example: Heart Disease Joint Distribution

P(G) P(C)

Cholesterol

HeartDisease

P(BP)

BloodPressure

P(HD|G,C,BP)

po(g, ¢, b, h) = pg(g)pe(b)pe(c)pe(hlg, b, c)

23/29

xamples Learning Bayesian Networks
00000800000

Example: Heart Disease Log Likelihood
P(G) P(C) P(BP)

Cholesterol

HeartDisease

BloodPressure

P(HD|G,C,BP)

P=5b
H‘XlN Z IOgGG‘FZT)I Z logGC
g9
#(HD =h,G =g,BP =b,C =

N

c) HD
lo ahlg,b,c

#a=n
R
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Example: Heart Disease Parameter Learning

P(G) P(C) P(BP)

Cholesterol

HeartDisease

BloodPressure

P(HD|G,C,BP)

max £(6x1V))
(4G
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Example: Heart Disease Parameter De-Coupling
P(G) P(C) P(BP)

Cholesterol

HeartDisease

BloodPressure

P(HD|G,C,BP)

#(G =g) G
Hé%xg N log 6,

Subject to ZQ? =1
g
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Example: Heart Disease Parameter De-Coupling

P(G) P(C) P(BP)

Cholesterol

BloodPressure

P(HD|G,C,BP)

LEE

g, BP=b,C =¢)

HD
-lg,b,c h

Subject to ZGhng[?b’c =1
h

5 #(HD = h,G =
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Bayesian Network Learning Summary

> The only parameters that must be jointly optimized in a Bayesian network are those
in the same sum-to-one constraint with the same setting of the parent variables.

» For any random variable X, consider a specific setting of its parent variables Y = y.
We just need to jointly optimize the parameters Hﬁy for each value z € Val(X).

» This is just multinomial parameter estimation applied to each variable X for each
setting y of it's parents:

#(X: , Y = )
Pe(sz‘Y:Y):of\y:ﬂ
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Bayesian Network Learning Algorithm

» For each random variable X:
> For each joint configuration x,,(q) € Val(Xpa(q)):
> For each value 24 € Val(Xy). Set

o #(Xa = x4, Xpa(d) = Xpa(d))
Tal%pa(a) #(X =x )
pa(d) pa(d)
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