Learning Intro

Example: Bayesian Network Graph

- P(G) - Gender
- P(C) - Cholesterol
- P(BP) - BloodPressure
- P(I) - Irritants

| HD | G | BP | C | P(HD|G,BP,C) |
|--------|------|------|------|-----------|
| No | M | Low | Low | 0.95 |
| Yes | M | Low | Low | 0.05 |
| No | F | Low | Low | 0.99 |
| Yes | F | Low | Low | 0.01 |

Figure 1: image
Bayesian Networks: Parameters

The default parameterization in a discrete Bayesian network simply uses a separate parameter for each element of each CPT:

\[P(\theta)(X=x|X_{pa}(X) = y) = \theta^X_{x|y} \]

Today’s Problem

▶ How do we choose the parameter values for a Bayesian network given a dataset?

▶ The maximum likelihood estimate for \(\theta^X_{x|y} \) is just the number of times \(X \) takes value \(x \) when its parents take value \(y \), divided by the number of times its parents take the value \(y \):

\[P(\theta)(X=x|Y = y) = \theta^X_{x|y} = \frac{\#(X=x,Y=y)}{\#(Y=y)} \]

How can we derive this result?

Example: Smoker and Cancer
Maximum-Likelihood Estimation (MLE)

A parametric model \(\{p_\theta | \theta \in \Theta\}\) is a family of probability distributions indexed by parameters \(\theta\).

Given data \(x^{(1)}, \ldots, x^{(N)}\), how do we choose \(p_\theta\)? (Notation: \(x^{(n)} = (x_1^{(n)}, \ldots, x_d^{(n)})\))

Principle of maximum likelihood: choose the distribution that assigns the highest probability to the data.

For an observed value \(x\), the **log-likelihood** is
\[
L(\theta | x) = \log p_\theta(x)
\]

For a data set \(x^{(1:N)} = (x^{(1)}, \ldots, x^{(N)})\), the log-likelihood is
\[
L(\theta | x^{(1:N)}) = \frac{1}{N} \sum_{n=1}^{N} \log p_\theta(x^{(n)})
\]

Goal: find \(\theta\) to maximize \(L(\theta | x^{(1:N)})\)

Example: Bernoulli Model

Suppose \(x^{(1)}, x^{(2)}, \ldots, x^{(N)}\) are drawn from a Bernoulli distribution:
\[
p_\theta(x) = \begin{cases}
1 - \theta, & x = 0 \\
\theta, & x = 1
\end{cases}
\]

The log-likelihood is
\[
L(\theta | x^{(1:N)}) = \frac{1}{N} \sum_{n=1}^{N} \log p_\theta(x^{(n)})
\]
\[
= \frac{1}{N} \sum_{n=1}^{N} (1[x^{(n)} = 0] \log(1 - \theta) + 1[x^{(n)} = 1] \log \theta)
\]
\[
= \frac{\#(X = 0)}{N} \log(1 - \theta) + \frac{\#(X = 1)}{N} \log \theta.
\]

What does this likelihood function look like?
Example: Bernoulli Likelihood

Learning as Likelihood Maximization

How can we find the model parameters \(\theta \) that maximize the likelihood?

- The derivative of a function is zero at every local maximum
- Zero derivative points are not local maxima in general.
- To be a local maximum, the curvature must be negative

Maximum Likelihood and Optimization

How can we find the model parameters \(\theta \) that maximize the likelihood?

- Compute the (partial) derivatives of the log likelihood
- Set them equal to zero
- Solve derivative equations for the parameters
- (Determine which solutions are local maxima by checking second derivatives)

MLE Examples
Example: Bernoulli Likelihood

The maximum likelihood estimates for the simple Bernoulli model are easy to derive:

\[L(\theta | x^{1:N}) = \frac{\#(X = 0)}{N} \log(1 - \theta) + \frac{\#(X = 1)}{N} \log \theta \]

\[\frac{\partial}{\partial \theta} L(\theta | x^{1:N}) = \frac{\#(X = 1)}{N} - \frac{\#(X = 0)}{N(1 - \theta)} \]

Setting the derivative equation equal to zero and solving yields the maximum likelihood estimate:

\[\theta = \frac{\#(X = 1)}{N} \]

Example: Multinomial Model

Consider a Multinomial model for a discrete random variable \(X \) that takes \(V \) values \(\{1, ..., V\} \).

\[p_{\theta}(x) = \begin{cases}
\theta_1 & x = 1 \\
\vdots & \\
\theta_{V-1} & x = V - 1 \\
1 - \sum_{v=1}^{V-1} \theta_v & x = V
\end{cases} \]

Then

\[L(\theta | x^{1:N}) = \frac{1}{N} \sum_{t=1}^{N} \left(\sum_{v=1}^{V-1} \mathbb{I}[x^{(t)} = v] \log(\theta_v) + \mathbb{I}[x^{(t)} = V] \log \left(1 - \sum_{v=1}^{V-1} \theta_v \right) \right) \]

\[= \sum_{v=1}^{V-1} \frac{\#(X = v)}{N} \log(\theta_v) + \frac{\#(X = V)}{N} \log \left(1 - \sum_{v=1}^{V-1} \theta_v \right) \]

Example: Multinomial Parameter Learning

The maximum likelihood estimates for the simple Bernoulli model are easy to derive:

\[L(\theta | x^{1:N}) = \frac{\#(X = 0)}{N} \log(1 - \theta) + \frac{\#(X = 1)}{N} \log \theta \]

\[\frac{\partial}{\partial \theta} L(\theta | x^{1:N}) = \frac{\#(X = 1)}{N} - \frac{\#(X = 0)}{N(1 - \theta)} \]

Setting the derivative equation equal to zero and solving yields the maximum likelihood estimate:

\[\theta = \frac{\#(X = 1)}{N} \]

Example: Bernoulli Parameter Learning

The maximum likelihood estimates for the simple Bernoulli model are easy to derive:

\[L(\theta | x^{1:N}) = \frac{\#(X = 0)}{N} \log(1 - \theta) + \frac{\#(X = 1)}{N} \log \theta \]

\[\frac{\partial}{\partial \theta} L(\theta | x^{1:N}) = \frac{\#(X = 1)}{N} - \frac{\#(X = 0)}{N(1 - \theta)} \]

Setting the derivative equation equal to zero and solving yields the maximum likelihood estimate:

\[\theta = \frac{\#(X = 1)}{N} \]
Bayesian Network Parameters

In a Bayesian network, each CPT is a collection of multinomial distributions with distinct parameters. There is one multinomial distribution for each joint setting of the parents of each variable.

\[
\begin{array}{ccc}
\text{HD} & \text{G} & \text{BP} & \text{C} & P(\text{HD}|G, BP, C) \\
\hline
\text{No} & M & \text{Low} & \text{Low} & \theta_{\text{HD}|\text{M}, \text{L}, \text{L}} \\
\text{Yes} & M & \text{Low} & \text{Low} & \theta_{\text{HD}|\text{M}, \text{L}, \text{L}} \\
\text{No} & F & \text{Low} & \text{Low} & \theta_{\text{HD}|\text{F}, \text{L}, \text{L}} \\
\text{Yes} & F & \text{Low} & \text{Low} & \theta_{\text{HD}|\text{F}, \text{L}, \text{L}} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

\[
\log P(\text{HD} = h|G = g, BP = b, C = b) = \log \theta_{\text{HD}|g,b,p}
\]

Log Likelihood Decomposition

The log likelihood of a dataset \(x^{(1:N)}\) for a Bayesian network decomposes into a sum of terms that depend only on the parameters for one conditional distribution:

\[
\mathcal{L}(\theta|x^{(1:N)}) = \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} \log \theta_{X_d|X_{\text{pa}(d)}}^{(n)}
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} \sum_{x_d} \sum_{x_{\text{pa}(d)}} \#(X_d = x_d, X_{\text{pa}(d)} = x_{\text{pa}(d)}) \log \theta_{X_d|X_{\text{pa}(d)}}
\]

\[
= \sum_{d=1}^{D} \sum_{x_d} \sum_{x_{\text{pa}(d)}} \frac{\#(X_d = x_d, X_{\text{pa}(d)} = x_{\text{pa}(d)})}{N} \log \theta_{X_d|X_{\text{pa}(d)}}
\]
Example: Heart Disease Joint Distribution

\[p_\theta(g,b,h) = p_\theta(g)p_\theta(b)p_\theta(c)p_\theta(h|g,b,c) \]

Example: Heart Disease Log Likelihood

\[
\mathcal{L}(\theta|x^{1:N}) = \sum_g \frac{\#(G = g)}{N} \log \theta_G^g + \sum_b \frac{\#(BP = b)}{N} \log \theta_{BP}^b + \sum_c \frac{\#(C = c)}{N} \log \theta_C^c \\
+ \sum_{g,b,c} \frac{\#(HD = h,G = g,BP = b,C = c)}{N} \log \theta_{HD}^{h|g,b,c}
\]

Example: Heart Disease Parameter Learning

\[
\max_{\theta \in \Theta} \mathcal{L}(\theta|x^{1:N}) \\
\text{Subject to } \sum_g \theta_G^g = 1
\]

Example: Heart Disease Parameter De-Coupling

\[
\max_{\theta_G} \sum_g \frac{\#(G = g)}{N} \log \theta_G^g \\
\text{Subject to } \sum_g \theta_G^g = 1
\]
Example: Heart Disease Parameter De-Coupling

\[
P(G) \quad P(C) \quad P(BP) \\
\text{Gender} \quad \text{Cholesterol} \quad \text{BloodPressure} \\
P(HD|G,C,BP) \\
\max_{\theta} \sum_{h} \frac{\#(HD = h, G = g, BP = b, C = c)}{N} \cdot \log \theta_{HD}^{h,g,b,c} \\
\text{Subject to } \sum_{h} \theta_{HD}^{h,g,b,c} = 1
\]

Bayesian Network Learning Summary

- The only parameters that must be jointly optimized in a Bayesian network are those in the same sum-to-one constraint with the same setting of the parent variables.
- For any random variable X, consider a specific setting of its parent variables $Y = y$. We just need to jointly optimize the parameters $\theta_{x|y}^X$ for each value $x \in \text{Val}(X)$.
- This is just multinomial parameter estimation applied to each variable X for each setting y of its parents:

\[
P_{\theta}(X = x|Y = y) = \theta_{x|y}^X = \frac{\#(X = x, Y = y)}{\#(Y = y)}
\]

Bayesian Network Learning Algorithm

- For each random variable X_d:
 - For each joint configuration $x_{pa(d)} \in \text{Val}(X_{pa(d)})$:
 - For each value $x_d \in \text{Val}(X_d)$. Set
 \[
 \theta_{x_d|x_{pa(d)}}^X \leftarrow \frac{\#(X_d = x_d, X_{pa(d)} = x_{pa(d)})}{\#(X_{pa(d)} = x_{pa(d)})}
 \]
Here is a more general problem: suppose we have an arbitrary target distribution p_* and a parametric model $M = \{p_\theta | \theta \in \Theta\}$.

How can we select $p_\theta \in M$ that is as close as possible to p_*?
Kullback-Leibler Divergence

One of the most used divergence criteria is the Kullback-Leibler divergence.

\[KL(p||q) = \sum_{x \in \text{Val}(X)} p(x) \log \left(\frac{p(x)}{q(x)} \right) \]

The KL divergence is a pre-metric. It satisfies:
- \(KL(p||q) \geq 0 \) for all \(p \) and \(q \)
- \(KL(p||q) = 0 \) if and only if \(p = q \)

It does not satisfy:
- \(KL(p||q) = KL(q||p) \) for all \(p, q \)
- \(KL(p||q) \leq KL(p||s) + KL(s||q) \) for all \(p, q, s \)

KL Divergence Minimization

\[KL(p^*||p_\theta) = \sum_{x \in \text{Val}(X)} p_\star(x) \log \left(\frac{p_\star(x)}{p_\theta(x)} \right) \]

\[= \sum_{x \in \text{Val}(X)} p_\star(x) (\log p_\star(x) - \log p_\theta(x)) \]

\[= \sum_{x \in \text{Val}(X)} p_\star(x) \log p_\star(x) - \sum_{x \in \text{Val}(X)} p_\star(x) \log p_\theta(x) \]

\[= - \sum_{x \in \text{Val}(X)} p_\star(x) \log p_\theta(x) + C \]

Minimizing \(KL(p^*||p_\theta) \) is the same as maximizing

\[\mathcal{L}(\theta|p_\star) = \sum_{x \in \text{Val}(X)} p_\star(x) \log p_\theta(x) \]

Maximum Likelihood = KL Minimization

Suppose \(p_\star \) is the empirical distribution of a data set \(x^{(1)}, \ldots, x^{(N)} \), meaning it places \(\frac{1}{N} \) probability on each data point. Then

\[\mathcal{L}(\theta|p_\star) = \sum_{x \in \text{Val}(X)} p_\star(x) \log p_\theta(x) = \frac{1}{N} \sum_{n=1}^{N} \log p_\theta(x^{(n)}) = \mathcal{L}(\theta|x^{(1:N)}) \]

\[\Rightarrow \text{maximum-likelihood estimation minimizes the KL-divergence from the empirical data distribution to } p_\theta. \]

This is a reasonable behavior even when the data comes from a distribution that does not belong to the parametric model.