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Learning Intro
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Example: Bayesian Network Graph

HeartDisease

Gender Cholesterol BloodPressure

ChestPain

Asthma

Shortness 
ofBreath

Irritants

P(G) P(C) P(BP) P(I)

P(A|I)

P(SB|A)P(CP|HD,A)

P(HD|G,C,BP)

3 / 29

Learning Intro Estimation MLE Examples Learning Bayesian Networks

Example: Conditional Probability Table

HD G BP C P (HD|G,BP,C)
No M Low Low 0.95
Yes M Low Low 0.05
No F Low Low 0.99
Yes F Low Low 0.01
... ... ... ... ...
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Bayesian Networks: Parameters

The default parameterization in a discrete Bayesian network simply uses a separate
parameter for each element of each CPT:

P◊(X=x|Xpa(X) =y)=◊Xx|y

5 / 29

Learning Intro Estimation MLE Examples Learning Bayesian Networks

Bayesian Networks: Parameters

HD G BP C P (HD|G,BP,C)
No M Low Low ◊HDN |M,L,L

Yes M Low Low ◊HDY |M,L,L

No F Low Low ◊HDN |F,L,L
Yes F Low Low ◊HDY |F,L,L
... ... ... ... ...
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Today’s Problem

I How do we choose the parameter values for a Bayesian network given a data set?
I The maximum likelihood estimate for ◊Xx|y is just the number of times X takes

value x when its parents take value y, divided by the number of times its parents
take the value y:

P◊(X = x|Y = y) = ◊Xx|y = #(X = x,Y = y)
#(Y = y)

How can we derive this result?
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Example: Smoker and Cancer
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Estimation
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Maximum-Likelihood Estimation (MLE)

A parametric model {p◊|◊ œ �} is a family of probability distributions indexed by
parameters ◊

Given data x(1), . . . ,x(N), how do we choose p◊? (Notation: x(n) = (x(n)
1 , . . . , x

(n)
d ))

Principle of maximum likelihood: choose the distribution that assigns the highest
probability to the data

Bernoulli code demo
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Maximum-Likelihood Estimation (MLE)

For an observed value x, the log-likelihood is

L(◊|x) = log p◊(x)

For a data set x(1:N) = (x(1), . . . ,x(N)), the log-likelihood is

L(◊|x(1:N)) = 1
N

Nÿ

n=1
log p◊(x(n))

Goal: find ◊ to maximize L(◊|x(1:N))
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Example: Bernoulli Model
Suppose x(1), x(2), · · · , x(N) are drawn from a Bernoulli distribution:

p◊(x) =
I

1 ≠ ◊, x = 0
◊, x = 1

.

The log-likelihood is

L(◊|x(1:N)) = 1
N

Nÿ

n=1
log p◊(x(n))

= 1
N

Nÿ

n=1

1
I[x(n) = 0] log(1 ≠ ◊) + I[x(n) = 1] log ◊

2

= #(X = 0)
N

log(1 ≠ ◊) + #(X = 1)
N

log ◊.
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Learning as Likelihood Maximization

How can we find the model parameters ◊ that maximize the likelihood?
I The derivative of a function is zero

at every local maximum

I Zero derivative points are not local
maxima in general.

I To be a local maximum, the
curvature must be negative
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Maximum Likelihood and Optimization

How can we find the model parameters ◊ that maximize the likelihood?
I Compute the (partial) derivatives of the log likelihood
I Set them equal to zero
I Solve derivative equations for the parameters
I (Determine which solutions are local maxima by checking second derivatives)
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MLE Examples
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Example: Bernoulli Parameter Learning

The maximum likelihood estimates for the simple Bernoulli model are easy to derive:

I L(◊|x(1:N)) = #(X = 0)
N

log(1 ≠ ◊) + #(X = 1)
N

log ◊

I
ˆ

ˆ◊
L(◊|x(1:N)) =

#(X = 1)
N◊

≠ #(X = 0)
N(1 ≠ ◊)

I Setting the derivative equation equal to zero and solving yields the maximum
likelihood estimate:

◊ =

#(X = 1)
N
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Example: Multinomial Model
Consider a Multinomial model for a discrete random variable X that takes V values
{1, ..., V }.

p◊(x) =

Y
_____]
_____[

◊1 x = 1
...
◊V ≠1 x = V ≠ 1
1 ≠ qV ≠1

v=1 ◊v x = V

Then

L(◊|x(1:N)) = 1
N

Nÿ

n=1

A
V ≠1ÿ

v=1
I[x(n) = v] log(◊v) + I[x(n) = V ] log

1
1 ≠

V ≠1ÿ

v=1
◊v

2B

=
V ≠1ÿ

v=1

#(X = v)
N

log(◊v) + #(X = V )
N

log
1
1 ≠

V ≠1ÿ

v=1
◊v

2
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Example: Multinomial Parameter Learning

I L(◊|x(1:N)) =
V ≠1ÿ

v=1

#(X = v)
N

log(◊v) + #(X = V )
N

log
1
1 ≠

V ≠1ÿ

v=1
◊v

2

I Setting the partial derivatives to zero, we require, for each i < V :

I ˆ

ˆ◊i
L(◊|x(1:N)) = #(X = i)

N◊i
≠ #(X = V )
N(1 ≠ qV ≠1

v=1 ◊v)
= 0

I It’s easy to check that this is solved by setting

◊i = #(X = i)
N
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Learning Bayesian Networks
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Bayesian Network Parameters
In a Bayesian network, each CPT is a collection of multinomial distributions with
distinct parameters. There is one multinomial distribution for each joint setting of the
parents of each variable.

HD G BP C P (HD|G,BP,C)
No M Low Low ◊HDN |M,L,L

Yes M Low Low ◊HDY |M,L,L

No F Low Low ◊HDN |F,L,L
Yes F Low Low ◊HDY |F,L,L
... ... ... ... ...

logP (HD = h|G = g,BP = b, C = c) = log ◊HDh|g,b,c
20 / 29

Learning Intro Estimation MLE Examples Learning Bayesian Networks

Joint Probability in Terms of Parameters

The joint probability in a Bayesian network is a product of conditional multinomial
distribution for each node:

p◊(x) =
DŸ

d=1
p◊(xd|xpa(d)) =

DŸ

d=1
◊Xd

xd|xpa(d)

=∆ log-likelihood is a sum of terms:

log p◊(x) =
Dÿ

d=1
log ◊Xd

xd|xpa(d)
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Log Likelihood Decomposition

The log likelihood of a dataset x(1:N) for a Bayesian network decomposes into a sum of
terms that depend only on the parameters for one conditional distribution:

L(◊|x(1:N)) = 1
N

Nÿ

n=1

Dÿ

d=1
log ◊Xd

x
(n)
d

|x(n)
pa(d)

= 1
N

Nÿ

n=1

Dÿ

d=1

ÿ

xd

ÿ

xpa(d)

I[x(n)
d = xd,x(n)

pa(d) = xpa(d)] log ◊Xd

xd|xpa(d)

=
Dÿ

d=1

ÿ

xd

ÿ

xpa(d)

#(Xd = xd,Xpa(d) = xpa(d))
N

log ◊Xd

xd|xpa(d)
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Example: Heart Disease Joint Distribution

HeartDisease

Gender Cholesterol BloodPressure

P(G) P(C) P(BP)

P(HD|G,C,BP)

p◊(g, c, b, h) = p◊(g)p◊(b)p◊(c)p◊(h|g, b, c)
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Example: Heart Disease Log Likelihood

HeartDisease

Gender Cholesterol BloodPressure

P(G) P(C) P(BP)

P(HD|G,C,BP)

L(◊|x(1:N)) =
ÿ

g

#(G = g)
N

log ◊Gg +
ÿ

b

#(BP = b)
N

log ◊BPb +
ÿ

c

#(C = c)
N

log ◊Cc

+
ÿ

g,b,c

ÿ

h

#(HD = h,G = g,BP = b, C = c)
N

log ◊HDh|g,b,c
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Example: Heart Disease Parameter Learning

HeartDisease

Gender Cholesterol BloodPressure

P(G) P(C) P(BP)

P(HD|G,C,BP)

max
◊œ�

L(◊|x(1:N))
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Example: Heart Disease Parameter De-Coupling

HeartDisease

Gender Cholesterol BloodPressure

P(G) P(C) P(BP)

P(HD|G,C,BP)

max
◊G

ÿ

g

#(G = g)
N

· log ◊Gg

Subject to
ÿ

g

◊Gg = 1
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Example: Heart Disease Parameter De-Coupling

HeartDisease

Gender Cholesterol BloodPressure

P(G) P(C) P(BP)

P(HD|G,C,BP)

max
◊HD·|g,b,c

ÿ

h

#(HD = h,G = g,BP = b, C = c)
N

· log ◊HDh|g,b,c

Subject to
ÿ

h

◊HDh|g,b,c = 1
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Bayesian Network Learning Summary

I The only parameters that must be jointly optimized in a Bayesian network are those
in the same sum-to-one constraint with the same setting of the parent variables.

I For any random variable X, consider a specific setting of its parent variables Y = y.
We just need to jointly optimize the parameters ◊Xx|y for each value x œ Val(X).

I This is just multinomial parameter estimation applied to each variable X for each
setting y of it’s parents:

P◊(X = x|Y = y) = ◊Xx|y = #(X = x,Y = y)
#(Y = y)
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Bayesian Network Learning Algorithm

I For each random variable Xd:
I For each joint configuration xpa(d) œ Val(Xpa(d)):

I For each value xd œ Val(Xd). Set

◊Xxd|xpa(d)
Ω #(Xd = xd,Xpa(d) = xpa(d))

#(Xpa(d) = xpa(d))
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