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Example: Bayesian Network Graph
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Example: Conditional Probability Table

HD G BP C P(HD|G, BP,C)
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Bayesian Networks: Parameters
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Bayesian Networks: Parameters
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HD G BP C P(HD|G,BP,C)
The default parameterization in a discrete Bayesian network simply uses a separate HD
P _ Y ply P No M Low Low ONfLLL
parameter for each element of each CPT: Yes M Low Low gHD
Favget RV VML
/ No F Low Low oub
_ o)X NIEL,
PG(X—$|Xpa(X) =y) _ezly Yes F Low Low HY\F,L,L
/f 7 value of peventS .
Va(ue
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5/29 6/29
Learning Intro Estimation MLE Examples Learning Intro Estimation MLE Examples Learning Bayesian Networks
0000080 000000 [e]e]e]e) 000000e 000000 0000 00000000000

Today's Problem

» How do we choose the parameter values for a Bayesian network given a data set?

» The maximum likelihood estimate for Hfly is just the number of times X takes

value x when its parents take value y, divided by the number of times its parents
take the value y:

#X =2Y=y)

4( X=x)
#(Y =y) N

Py(X =a|Y =y) =07, =

=

How can we derive this result?

v
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Example: Smoker and Cancer

Swokel  caucer
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Maximum-Likelihood Estimation (MLE)
A parametric model {py|@ € O} is a family of probability distributions indexed by
. . parameters 6 daty (‘ndex
Estimation e
Given data x1, ..., x™) how do we choose py? (Notation: x(™ = (z{™, ... ,x&")))
RY (ndey —~ A
Principle of maximum likelihood: choose the distribution that assigns the highest
probability to the data
Bernoulli code demo
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Maximum-Likelihood Estimation (MLE) Example: Bernoulli Model
Suppose 21, z@ ... (V) are drawn from a Bernoulli distribution:
For an observed value x, the log-likelihood is 1—-6, z=0 lo P (X)" ‘oj () =0
po(x) = 0 e 9P 98 K
Foee) 5@? = log py(x) ’
13
(1:N) a)ﬁiww“(]v) ficed - . The log-likelihood is =T [ x=0] (03("9)
For a data set x!"V) = (x1), ... x™)), the Jog-likelihood is K AssUmeS
nHveye 7([‘) X('J) 1 N + _-[[Z__X"/-l [03 9
N e~ (LN)y . & (n)
: 1 2 L0z = log pg(z")
n= N
1
=N > (]I[J:(”) = 0]log(1 — 0) 4+ I[z(™ = 1]log 9)
Goal: find § to maximize L£(g|x(1:N)) n=1
#(X =0) #X =1)
=2 = og(1 — ) + 0= —og 6.
N og(l—6)+ N og0
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Learning as Likelihood Maximization

How can we find the model parameters 6 that maximize the likelihood?

» The derivative of a function is zero
at every local maximum
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Learning as Likelihood Maximization

How can we find the model parameters € that maximize the likelihood?

» The derivative of a function is zero
at every local maximum

F(x)
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Learning as Likelihood Maximization Learning as Likelihood Maximization
How can we find the model parameters 6 that maximize the likelihood? How can we find the model parameters € that maximize the likelihood?
> The derivative of a function is zero > The derivative of a function is zero
at every local maximum at every local maximum
® S
= » Zero derivative points are not local =
maxima in general.
X X
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Learning as Likelihood Maximization

How can we find the model parameters 6 that maximize the likelihood?

» The derivative of a function is zero

at every local maximum /\
» Zero derivative points are not local
maxima in general. \/

F(x)
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Learning as Likelihood Maximization

ConCaul

How can we find the model parameters € that maximize the likelihood?

» The derivative of a function is zero
at every local maximum

~

R . e

» Zero derivative points are not local =
maxima in general.

» To be a local maximum, the

curvature must be negative X
1“‘“‘ dectv neg.

Hessian motds =S e,;;ew&[ucg

1 Networks

Ny sewdefimte non- posihie
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Maximum Likelihood and Optimization
How can we find the model parameters 6 that maximize the likelihood?
» Compute the (partial) derivatives of the log likelihood MLE Examples
» Set them equal to zero
» Solve derivative equations for the parameters
> (Determine which solutions are local maxima by checking second derivatives)
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Example: Bernoulli Parameter Learning

The maximum likelihood estimates for the simple Bernoulli model are easy to derive:

v Loty = FE =0 gy FE=D
£(0]z"N) = T2 log(1 - 6) + T log

> 9 (1:N) ____‘tt(X‘cD | (= () |
=g e f e e — O

f
> Setting the derivativ

likelihood estimate: ) i(:(?(" 0
B N

quation equal to zero and solving yields the maximum
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Consider a Multinomial model for a discrete random variable X that takes V values

{1,..,V}. 3
Lelx) =
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Example: Multinomial Model

[0'3 PQCX)
V=l
( = 'ZICEX=\/11039V
O <=t « V]l (- 300
-2e. G
Lo x"™) = 5 i( >

id@_&) [o . %(Xzf\/ bﬂ((*%&)

ve !l (G

o x=t
9;, 3(.‘51

pol ™
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Example: Multinomial Parameter Learning
P
0
L X #(X
> £(6)a1N) Z #X =v) N log (1~ 20)

» Setting the partial derivatives to zero, we require, for each i < V:

> %ﬂ(e‘ﬂﬁ(ll\”) — #(X = 7’) _ #(X = V) =0

NO; N1 - 25;11 0)
> It's easy to check that this is solved by setting

log(0y) + ————
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Bayesian Network Parameters

In a Bayesian network, each CPT is a collection of multinomial distributions with
distinct parameters. There is one multinomial distribution for each joint setting of the
parents of each variable.

HD G BP C P(HD|G,BP,C)
No M Low Low 0N L

Yes M Low Low ‘9%?»1, LL

No F Low Low 0 N‘DF’ LI

Yes F Low Low OHD,

Y|F,L,L

log P(HD = h|G = g, BP =b,C = ¢) = log 67, .

20/29

Learning Bayesian Networks
00800000000

Joint Probability in Terms of Parameters

The joint probability in a Bayesian network is a product of conditional multinomial
distribution for each node:

D D .
x) = [ [ po(zalxpaca) = [] 654
d=1

Td|Xpa(d)

= log-likelihood is a sum of terms:

log py(x

Z lOg lexpa(d)
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Log Likelihood Decomposition

The log likelihood of a dataset x(3¥) for a Bayesian network decomposes into a sum of
terms that depend only on the parameters for one conditional distribution:

< X,
(L:N))
L(0)x! Zl 0 (rfw‘ (n)

—1 Xpa(d)

D
ZZ ZH[:L =24,X pazd)—x ()]loge

1d=1 ZTd Xpa(d)

Z\H
M=

3
Il
—
I

M=

Tl Xpa(d)

n

v #(Xq = w4, Xpa(d) = Xpa(d))
N

Mu Z\H

log ozd\xpa(d)

d=1 T4 Tpa(d)
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Example: Heart Disease Joint Distribution

P(G) P(C)

Cholesterol

HeartDisease

P(BP)

BloodPressure

P(HD|G,C,BP)

Po(g, ¢, b, h) = pg(g)pa(b)pa(c)pa(hlg, b, )
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Example: Heart Disease Log Likelihood

P(G) P(C) P(BP)
BloodPressure

HeartDisease

xamples

Example: Heart Disease Parameter Learning

P(G)

P(C)

Cholesterol

P(BP)

BloodPressure

Learning Bayesian Networks
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P(HD‘G’C’BP) HeartDisease
P(HD|G,C,BP)
#(G G #(BP =1b) BP #(C =¢) C
L(OxTN) Z logB +2710g9b +2710g6’4
g N c N ‘ maxﬁ(@]x(lzm)
0coO
#HD=h,G=9,BP=0b,C=c
+ZZ ( ) N7 )IOgeh‘gbc
g.bc h
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Example: Heart Disease Parameter De-Coupling

P(G) P(C) P(BP)
BloodPressure

HeartDisease

P(HD|G,C,BP)

-log 9G

max Z

Subject to ZOgG =
g
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Example: Heart Disease Parameter De-Coupling

P(G)

P(C)

Cholesterol

HeartDisease

P(BP)

BloodPressure

P(HD|G,C,BP)
#(HD =h,G=g,BP=b,C = ¢)
ma
Ir/ch; N

Subject to ZGﬁngC =1
h

-log thg be

00000000800
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MLE Example

Bayesian Network Learning Summary

» The only parameters that must be jointly optimized in a Bayesian network are those
in the same sum-to-one constraint with the same setting of the parent variables.

» For any random variable X, consider a specific setting of its parent variables Y = y.
We just need to jointly optimize the parameters G;ﬁy for each value z € Val(X).

» This is just multinomial parameter estimation applied to each variable X for each
setting y of it's parents:

_ o _x _#X=2Y=y)
Pe(Xff|Y*Y)*91|y*W
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Bayesian Network Learning Algorithm

» For each random variable X:
> For each joint configuration X,y € Val(Xpa(a)):
> For each value z4 € Val(Xg). Set

x #(Xa = w4, Xpa(d) = Xpa(d))
2alXpa() #(Xpa(d) = Xpa(d))
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