

Review
oo

Examples
oooooooo

D-Separation
oooooooo

Queries
oooooooo

COMPSCI 688: Probabilistic Graphical Models

Lecture 4: Directed Graphical Models: D-Separation, Queries

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 28

Review
●○

Examples
oooooooo

D-Separation
oooooooo

Queries
oooooooo

Review

2 / 28

Review
oo

Examples
oooooooo

D-Separation
oooooooo

Queries
oooooooo

Review

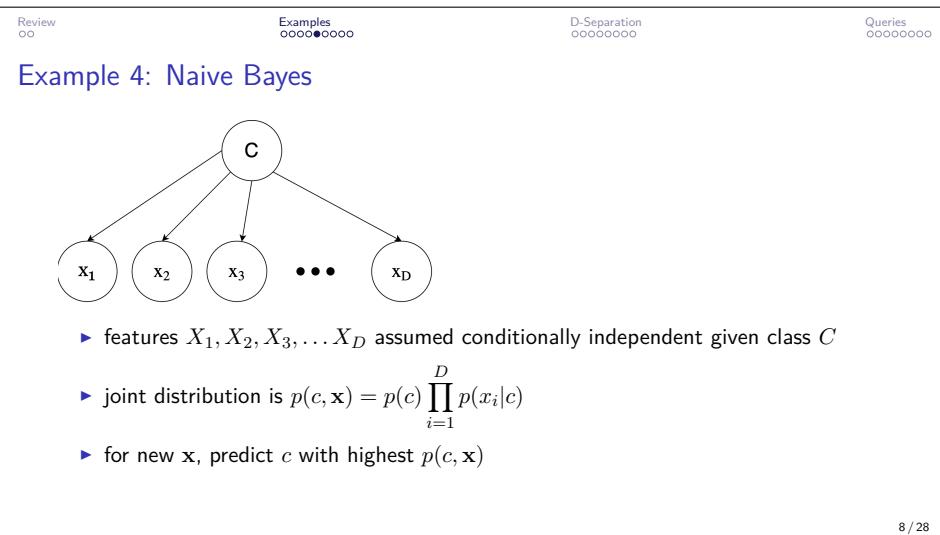
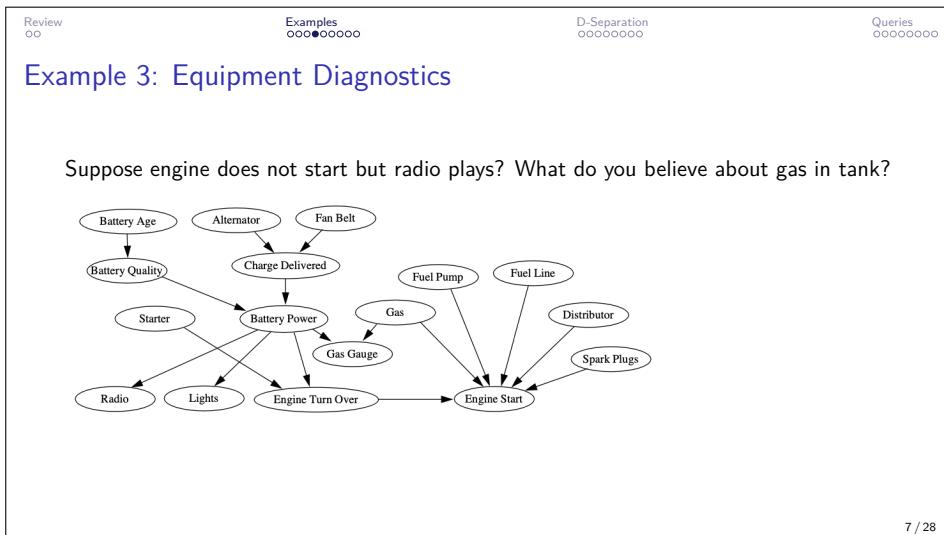
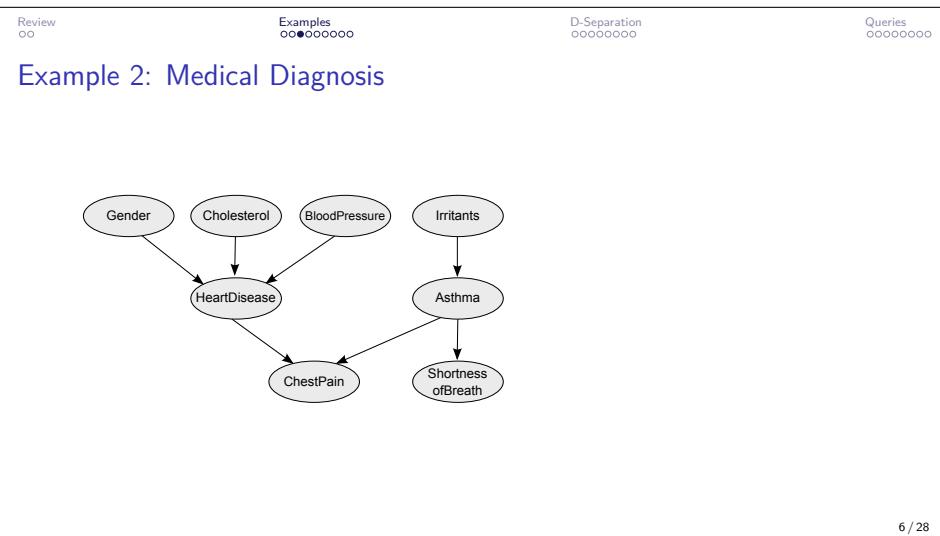
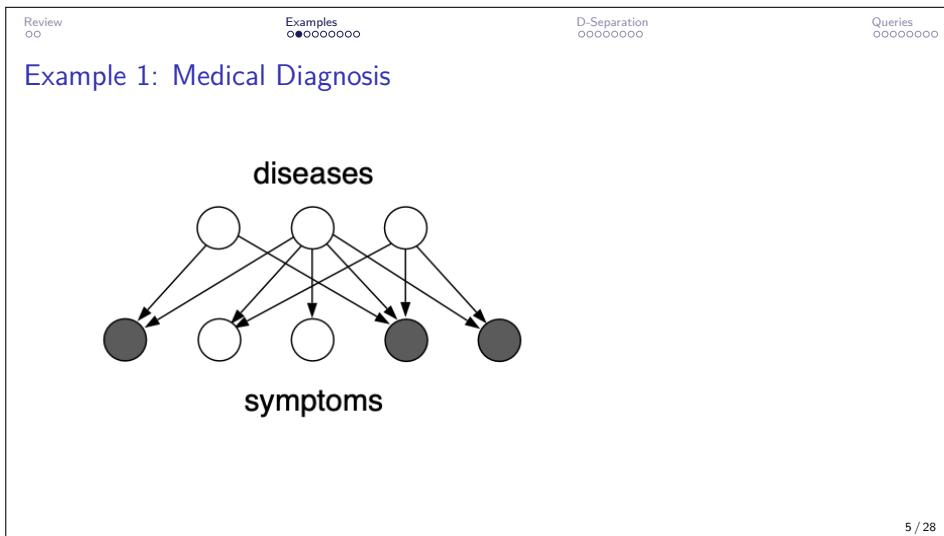
- ▶ Bayes net: $p(\mathbf{x}) = \prod_{i=1}^N p(x_i | \mathbf{x}_{\text{pa}(i)})$
- ▶ Factorization \iff conditional independence (one statement per node)

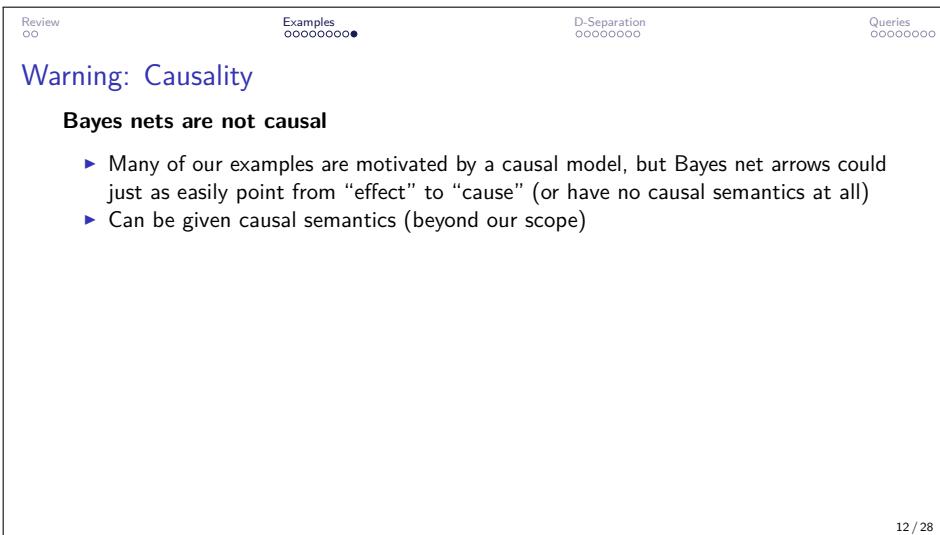
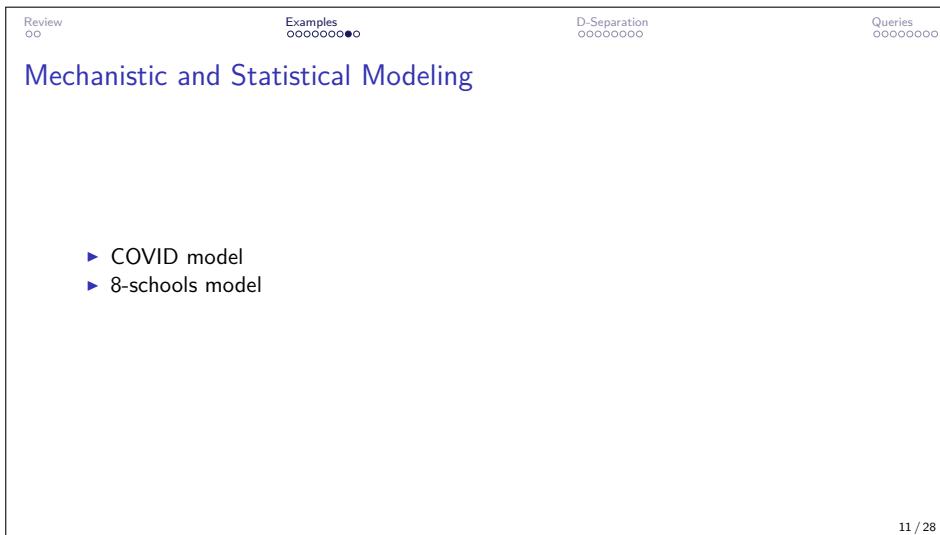
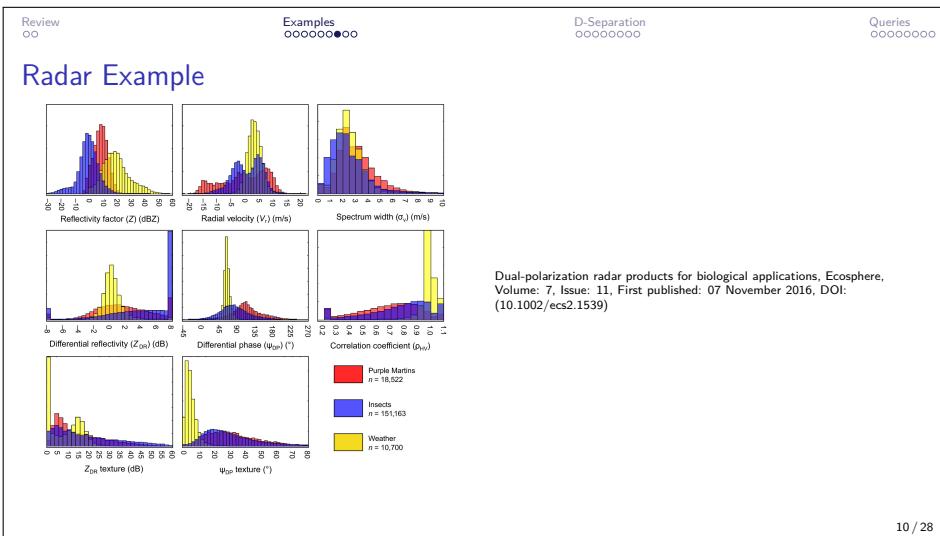
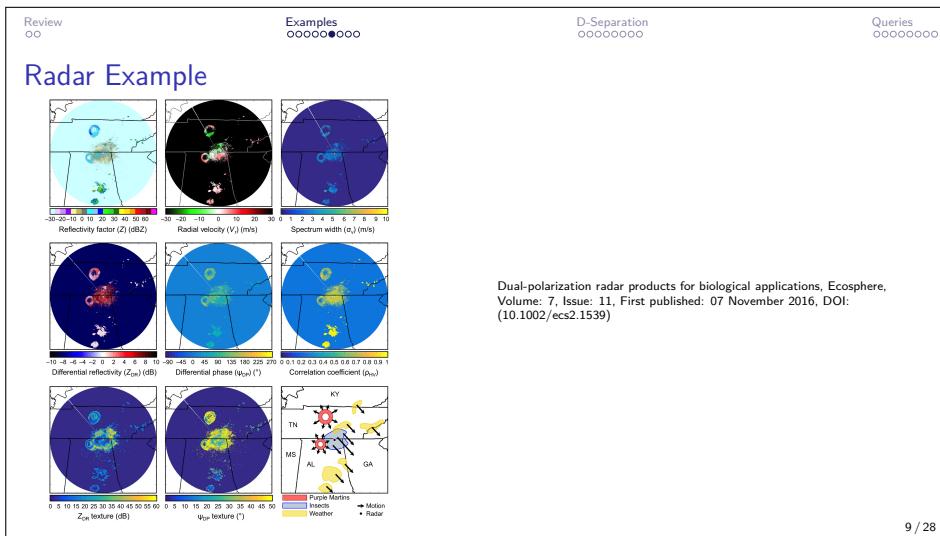
$$p(\mathbf{x}) = \prod_{i=1}^N p(x_i | \mathbf{x}_{\text{pa}(i)}) \iff X_i \perp \mathbf{X}_{\text{nd}(i)} | \mathbf{X}_{\text{pa}(i)} \text{ for all } i$$

- ▶ We would like to chain together conditional independence properties using the graph structure to derive new ones \rightarrow D-separation

3 / 28

Review
oo





Examples
●oooooooo





D-Separation
oooooooo

Queries
oooooooo

Examples

4 / 28

Review oo Examples ooooooooo D-Separation ●oooooooo Queries oooooooo

D-Separation

13 / 28

Review oo Examples ooooooooo D-Separation o●oooooooo Queries oooooooo

Independence Properties

So far, we know $X_i \perp X_{\text{nd}(i)} | X_{\text{pa}(i)}$ for all i

However, this also implies other conditional independence properties. E.g., it's true that $X_1 \perp X_6 | X_2, X_3$ in this network. How can we determine this?

The core principles can be understood by examining three-node networks, then "chaining" ideas together...

14 / 28

Review oo Examples ooooooooo D-Separation oo●ooooo Queries oooooooo

Three-Node Bayes Nets: Common Parent, Chains

Networks $A \leftarrow B \rightarrow C$, $A \rightarrow B \rightarrow C$ and $C \rightarrow B \rightarrow A$

$A \not\perp C$ but $A \perp C | B$. Observing B blocks dependence of A and C

15 / 28

Review oo Examples ooooooooo D-Separation oooo●oooo Queries oooooooo

Three-Node Bayes Nets: V-Structure

Network $A \rightarrow B \leftarrow C$

$A \perp C$ but $A \not\perp C | B$. Observing B induces dependence of A and C

16 / 28

Review oo Examples oooooooooo D-Separation ooooo●ooo Queries oooooooo

Explaining Away

- “Explaining away” via V-structures is a distinguishing property of Bayes nets:
- Example:** You have tongue pain and loss of sensation. Do you have COVID or did you burn your tongue?

In words: if there are two possible causes for the observed evidence, knowing about one of the causes provides information about the other

17 / 28

Review oo Examples oooooooooo D-Separation ooooo●ooo Queries oooooooo

D-Separation

Directed separation or **D-separation** is a definition of separation in a directed graph that corresponds exactly to conditional independence in Bayes nets

A three-node path is blocked iff has one of the following types:

- 1) $A \rightarrow B \rightarrow C$ or $C \rightarrow B \rightarrow A$ and B is observed
- 2) $A \leftarrow B \rightarrow C$ and B is observed
- 3) $A \rightarrow B \leftarrow C$ and neither B nor any descendent of B is observed

Let \mathbf{X} , \mathbf{Y} , and \mathbf{Z} be three sets of nodes. \mathbf{X} and \mathbf{Y} are d-separated given observed nodes \mathbf{Z} iff every path from \mathbf{X} to \mathbf{Y} is blocked, where a path is blocked if any three-node sequence in the path is blocked.

\mathbf{X} and \mathbf{Y} are d-separated given $\mathbf{Z} \iff \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$

18 / 28

Review oo Examples oooooooooo D-Separation ooooo●ooo Queries oooooooo

Example: D-separation in the Alarm Model

Earthquake... Radio... Alarm... Neighbor...

E \perp B | A, R?
E \perp B | R, N?
E \perp B | R?

Viewer does not support [SVG 1.1](#)

19 / 28

Review oo Examples oooooooooo D-Separation oooooooo● Queries oooooooo

Markov Blanket

A Markov blanket of A is a set of nodes that d-separates A from the remaining nodes.

In a Bayes net, a Markov blanket of A consists of:

- parents of A
- children of A
- parents of children of A

20 / 28

Review oo Examples oooooooooo D-Separation oooooooo Queries oooooooo

Queries

```

graph TD
    B((B)) --> A((A))
    E((E)) --> A
    B --> PD((PD))
    E --> N((N))
  
```

21 / 28

Review oo Examples oooooooooo D-Separation oooooooo Queries oooooooo

The Alarm Network (II)

- ▶ You live in the suburbs of LA. Your home alarm may go off because of a break-in or earthquake. If your alarm goes off you might get a call from the police or your neighbor.
- ▶ **Random Variables:** Break-in (B), Earthquake (E), Alarm (A), Police Department calls (PD), Neighbor calls (N).

22 / 28

Review oo Examples oooooooooo D-Separation oooooooo Queries oooooooo

The Alarm Network: Factorization

▶ **Factorization:** $P(B, E, A, PD, N) = P(B)P(E)P(A|B, E)P(PD|A)P(N|A)$

23 / 28

Review oo Examples oooooooooo D-Separation oooooooo Queries oooooooo

The Alarm Network: Parameters

B	E	$P(A=1 B, E)$
1	1	0.950
1	0	0.940
0	1	0.290
0	0	0.001

B	E	$P(A=1 B, E)$
1	1	0.950
1	0	0.940
0	1	0.290
0	0	0.001

A	$P(PD=1 A)$
1	0.900
0	0.005

A	$P(N=1 A)$
1	0.750
0	0.100

24 / 28

Review oo Examples oooooooo D-Separation oooooooo Queries ooooo●ooo

The Alarm Network: Joint Query

► **Question:** What is the probability that there is a break-in, but no earthquake, the alarm goes off, the police call, but your neighbor does not call?

$$\begin{aligned}
 P(B=1, E=0, A=1, PD=1, N=0) \\
 &= P(B=1)P(E=0)P(A=1|B=1, E=0)P(PD=1|A=1)P(N=0|A=1) \\
 &= 0.001 \cdot (1 - 0.002) \cdot 0.94 \cdot 0.9 \cdot (1 - 0.75)
 \end{aligned}$$

Diagram of the Alarm Network:

```

    graph TD
      B((B)) -- "P(B=1)  
0.001" --> A((A))
      E((E)) -- "P(E=1)  
0.002" --> A
      A -- "P(A=1|B,E)  
0.950" --> PD((PD))
      A -- "P(A=1|B,E)  
0.940" --> N((N))
      PD -- "P(PD=1|A)  
0.900" --> N
      N -- "P(N=1|A)  
0.005" --> N
  
```

25 / 28

Review oo Examples oooooooo D-Separation oooooooo Queries ooooo●ooo

The Alarm Network: Marginal Query

► **Question:** What is the probability that there was a break-in, but no earthquake, the police call, but your neighbor does not call?

$$\begin{aligned}
 P(B=1, E=0, PD=1, N=0) \\
 &= \sum_{a=0}^1 P(B=1, E=0, A=a, PD=1, N=0) \\
 &= P(B=1)P(E=0)P(A=1|B=1, E=0)P(PD=1|A=1)P(N=0|A=1) \\
 &\quad + P(B=1)P(E=0)P(A=0|B=1, E=0)P(PD=1|A=0)P(N=0|A=0) \\
 &= 0.001 \cdot (1 - 0.002) \cdot 0.94 \cdot 0.9 \cdot (1 - 0.75) \\
 &\quad + 0.001 \cdot (1 - 0.002) \cdot (1 - 0.94) \cdot 0.005 \cdot (1 - 0.1)
 \end{aligned}$$

26 / 28

Review oo Examples oooooooo D-Separation oooooooo Queries ooooo●ooo

The Alarm Network: Conditional Query

► **Question:** What is the probability that the alarm went off given that there was a break-in, but no earthquake, the police call, but your neighbor does not call?

$$\begin{aligned}
 P(A=1|B=1, E=0, PD=1, N=0) \\
 &= \frac{P(B=1, E=0, A=1, PD=1, N=0)}{\sum_{a=0}^1 P(B=1, E=0, A=a, PD=1, N=0)} \\
 &= \frac{P(B=1)P(E=0)P(A=1|B=1, E=0)P(PD=1|A=1)P(N=0|A=1)}{\sum_{a=0}^1 P(B=1)P(E=0)P(A=a|B=1, E=0)P(PD=1|A=a)P(N=0|A=a)}
 \end{aligned}$$

27 / 28

Review oo Examples oooooooo D-Separation oooooooo Queries ooooo●ooo

The Alarm Network: More Queries

► What is the probability that there is a break-in given that there is an earthquake?

What is the probability that your neighbor calls given that the alarm goes off and there is an earthquake?

What is the probability that the police call given that the alarm goes off and your neighbor calls?

What is the probability of a break-in given that the alarm goes off and the police call?

What is the probability that your neighbor calls given that there is an earthquake?

What is the probability that there is a break-in given that there is an earthquake and the alarm goes off?

What is the probability that your neighbor calls given that the police call?

28 / 28