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Review

» Conditional independence

X1Y|Z <= p(y,x|z) =
= p(xly,z) =

p(x|z)p(y|z)
p(x|2)
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Compactness from Independence
Suppose we have a joint distribution p(a, b, ¢) and we know that the independence

relation C' L A|B holds. How can we exploit this fact to simplify p(a, b, c)?

p(a,b,¢) = p(a)p(bla)p(c|a, b) chain rule

= p(a)p(bla)p(c|b)  conditional independence
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Bayesian Networks: Main Idea
» The main idea of Bayesian networks is conceptually simple:

1. Order the variables and apply the chain rule
2. Drop some dependencies, which corresponds to conditional independence
assumptions

» Example: variables G,C, HD,CP, assume: (1) G LC, (2) CP L G,C|HD
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Bayesian Networks: Main Idea Bayesian Networks: Nodes
Formally, a Bayesian network consists of a directed acyclic graph (DAG) G and a joint
distribution p(x) = p(x1,...,xy) for random variables X71,..., Xn
» This idea has several consequences:
g The vertex set V' has one node i for Example:
> The variables can be arranged in a directed acyclic graph (DAG). (Sometimes each random variable X;
interpreted causally, but beware.)
> The distribution satisfies certain (local and global) conditional independence Warning: it's also common to use the
properties that can be derived from the graph random variable itself, i.e., X; as the
» We'll next introduce Bayesian networks formally and start discussing their properties node
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Bayesian Networks: Edges

The DAG constraint means that G can't contain any directed cyclesi — j — -+ — 1.
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Bayesian Networks: Parents/Children

If there is a directed edge i — j:

Example:

Example:

Cholesterol

Not a valid DAG
Directed Cycle

BloodPressure

Example:

Cholesterol

A valid DAG.
No directed cycle

BloodPressure

> i is a parent of j

> jis a child of i

> (sometimes: X; is a parent of X,
and so on)

Cholesterol

HeartDisease

Define
» pa(i) = set of all parents of i
» ch(i) = set of all children of ¢

pa(CP)={HD,A}
ch(A) = {CP, SB}
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Bayesian Networks: Descendants/Non-Descendants Bayesian Networks: Joint Distribution
The joint distribution implied by a Bayesian network is factorized into a product of local
Example: conditional probability distributions.
If t»he're. is addlrectjd ;;atfh 'from i to j: PG) P(C) PEP) P)
j is a descendant of i.
> Else j is a non-descendent of i.
Define P(HD|G,C,BP) @ P(AID)
> de(i) = set of all descendants of 4
Shortness
> nd(i) = set of all non-descendants
of i P(CPHD,A) P(SBJA)
de(I) = {4,5B,CP} Figure 1: image
nd(BP) ={G,C,1,A,SB}
The joint distribution is the product of the conditional distributions:
N
p(x) = L4, p(z; | Xpa(z‘))-
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Bayesian Networks: CPDs and CPTs

> The individual factors p(w; | Xpa(;)) in @ Bayesian network are referred to as
conditional probability distributions or CPDs.

» The CPD for node i must specify the probability that X; takes any value z; in its
domain when conditioned on each joint assignment x,,(;) of its parents

» For discrete random variables, we can represent the CPD of each node using a
look-up table called a conditional probability table or CPT.
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Bayesian Networks: CPT Example

hd g bp ch p(hdlg,bp,ch) >
No M Low Low 0.95
Yes M Low Low 0.05 @
No F Low Low 0.99
Yes F Low Low 0.01

Shortness
ofBreath

Conditional Independence and Factorization
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Bayesian Networks: Storage Complexity

» What is the minimum amount of space needed to store the probability distribution
for a single discrete random variable that takes V' values? V —1

» How much space does it take to store the CPT for a binary-valued variable with D
binary-valued parents? 27

» Suppose there are D binary variables connected in a chain X; — Xy — ... = Xp.
What is the total storage cost? 1+ 2(D — 1)
How large is the full joint? 2P —1
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Conditional Independence and Factorization

We assumed factorization in a Bayes net: p(x) = [1V, p(z; | Xpa(i))- What does this
have to do with conditional independence?

Claim: for a probability distribution p(x)

N

p(X) = Hp(xt ‘ Xpa(i))

i=1

— X; L Xnd(z’) ‘ Xpa(i) for all 4

factorization <= conditional independence

» RHS in words: X; is conditionally independent of its non-descendants given
its parents
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Conditional Independence Implies Factorization
Assume X; L Xnd(i) | Xpa(i) for all 4
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Review of Argument
0. Assume X; | Xnd(i) ‘ Xpa(i) for all 4
1. Number nodes according to a topological ordering and apply the chain rule

N
p(x) = HP(%\X{L.‘.JA})
i=1
2. Nodes {1,...,7 — 1} must be non-descendants of i because they come earlier in

the topological order. Therefore we can split these nodes into parents and other
nodes which are all non-descendants:

N
p(x) = [ p(®il%pagi)> X(1....i-1}\pa(i))
i=1

3. Now simplify using X; L X{l,wi,l}\pa(i)\Xpa(i), which is true because nodes
{1,...,4— 1} \ pa(i) are non-descendants

N
p(X) = H p(‘ri‘xpa(i))
=1
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Factorization Implies Conditional Independence

To show this, first we'll argue that marginalizing descendants in a Bayes net is easy:
Warmup: suppose j is a node with no children in a Bayes net (a “leaf”). Then
p(x_j) = [ p(xilxpagi))
i#j
In words, we can marginalize z; by dropping the factor p(z;|xp,(;)) to get a Bayes net
with one less node.

This is only true for leaf nodes. Marginalizing non-leaf nodes may be very hard!
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Proof:

p(x_j) = > p(x_j,z;)
= Zp(l'j\xpa(j)) [ p(@il%pag))

i#j
= [Ip(@ilxpaci)) - D p(xj]%pagj))
i#] Tj

1

Pushing the sum inside in the last line is possible because j is a leaf, so j ¢ pa(i) for
any 1.
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Marginalizing a Set of Descendants

Lemma: suppose A and B partition the nodes of a Bayes net and there is no path from
B to A. Then
p(xa) =Y _p(xa,xp) =[] p(zilxpaci)
XB €A
Proof idea: at least one node in B is a leaf. Eliminate it using the warmup lemma and
then repeat.
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Factorization Implies Conditional Independence
Assume p(x) = [TV, p(z; | Xpa(s))- Then for any i

(s, Xnd(i))
TilXnd(i)) = — 7\
Pleibna) = =)

_ Pilxpagi)) - Tjena(i) P(Z51Xpags))

Use lemma twice
HjEnd(i) P(x;5]%pag))

= p(l'i|xpa(i))

This demonstrates that X; 1 Xpqz;)|Xpa(i) for all i.

24 /25




Review
oo

Bayesian Networks
000000000000

Conditional Independence and Factorization
.

000000000

25/25




