
Review Bayesian Networks Conditional Independence and Factorization

COMPSCI 688: Probabilistic Graphical Models
Lecture 3: Directed Graphical Models

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 25

Review Bayesian Networks Conditional Independence and Factorization

Review

2 / 25

Review Bayesian Networks Conditional Independence and Factorization

Review

▶ Conditional independence

X⊥Y|Z ⇐⇒ p(y, x|z) = p(x|z)p(y|z)
⇐⇒ p(x|y, z) = p(x|z)
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Compactness from Independence
Suppose we have a joint distribution p(a, b, c) and we know that the independence
relation C⊥A|B holds. How can we exploit this fact to simplify p(a, b, c)?

p(a, b, c) = p(a)p(b|a)p(c|a, b) chain rule

= p(a)p(b|a)p(c|b) conditional independence
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Bayesian Networks: Main Idea
▶ The main idea of Bayesian networks is conceptually simple:

1. Order the variables and apply the chain rule
2. Drop some dependencies, which corresponds to conditional independence

assumptions
▶ Example: variables G, C, HD, CP , assume: (1) G ⊥ C, (2) CP ⊥ G, C|HD
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Bayesian Networks: Main Idea

▶ This idea has several consequences:
▶ The variables can be arranged in a directed acyclic graph (DAG). (Sometimes

interpreted causally, but beware.)
▶ The distribution satisfies certain (local and global) conditional independence

properties that can be derived from the graph

▶ We’ll next introduce Bayesian networks formally and start discussing their properties
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Bayesian Networks: Nodes

Formally, a Bayesian network consists of a directed acyclic graph (DAG) G and a joint
distribution p(x) = p(x1, . . . , xN ) for random variables X1, . . . , XN

The vertex set V has one node i for
each random variable Xi

Warning: it’s also common to use the
random variable itself, i.e., Xi as the
node

Example:

HeartDisease

Gender Cholesterol BloodPressure
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Bayesian Networks: Edges
The DAG constraint means that G can’t contain any directed cycles i → j → · · · → i.

Example:

HeartDisease

Gender Cholesterol BloodPressure

Not a valid DAG
Directed Cycle

Example:

HeartDisease

Gender Cholesterol BloodPressure

A valid DAG.
No directed cycle
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Bayesian Networks: Parents/Children

If there is a directed edge i → j:
▶ i is a parent of j
▶ j is a child of i
▶ (sometimes: Xi is a parent of Xj ,

and so on)

Define
▶ pa(i) = set of all parents of i
▶ ch(i) = set of all children of i

Example:

HeartDisease

Gender Cholesterol BloodPressure

ChestPain

Asthma

Shortness 
ofBreath

Irritants

pa(CP ) = {HD, A}
ch(A) = {CP, SB}
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Bayesian Networks: Descendants/Non-Descendants

If there is a directed path from i to j:
▶ j is a descendant of i.
▶ Else j is a non-descendent of i.

Define
▶ de(i) = set of all descendants of i
▶ nd(i) = set of all non-descendants

of i

Example:

HeartDisease

Gender Cholesterol BloodPressure

ChestPain

Asthma

Shortness 
ofBreath

Irritants

de(I) = {A, SB, CP}
nd(BP ) = {G, C, I, A, SB}
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Bayesian Networks: Joint Distribution
The joint distribution implied by a Bayesian network is factorized into a product of local
conditional probability distributions.

HeartDisease

Gender Cholesterol BloodPressure

ChestPain

Asthma

Shortness 
ofBreath

Irritants

P(G) P(C) P(BP) P(I)

P(A|I)

P(SB|A)P(CP|HD,A)

P(HD|G,C,BP)

Figure 1: image

The joint distribution is the product of the conditional distributions:
p(x) = ∏N

i=1 p(xi | xpa(i)).
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Bayesian Networks: CPDs and CPTs

▶ The individual factors p(xi | xpa(i)) in a Bayesian network are referred to as
conditional probability distributions or CPDs.

▶ The CPD for node i must specify the probability that Xi takes any value xi in its
domain when conditioned on each joint assignment xpa(i) of its parents

▶ For discrete random variables, we can represent the CPD of each node using a
look-up table called a conditional probability table or CPT.
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Bayesian Networks: CPT Example

hd g bp ch p(hd|g, bp, ch)
No M Low Low 0.95
Yes M Low Low 0.05
No F Low Low 0.99
Yes F Low Low 0.01

...

HeartDisease

Gender Cholesterol BloodPressure

ChestPain

Asthma

Shortness 
ofBreath

Irritants
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Bayesian Networks: Storage Complexity

▶ What is the minimum amount of space needed to store the probability distribution
for a single discrete random variable that takes V values? V − 1

▶ How much space does it take to store the CPT for a binary-valued variable with D
binary-valued parents? 2D

▶ Suppose there are D binary variables connected in a chain X1 → X2 → ... → XD.
What is the total storage cost? 1 + 2(D − 1)
How large is the full joint? 2D − 1
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Conditional Independence and Factorization
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Conditional Independence and Factorization

We assumed factorization in a Bayes net: p(x) = ∏N
i=1 p(xi | xpa(i)). What does this

have to do with conditional independence?

Claim: for a probability distribution p(x)

p(x) =
N∏

i=1
p(xi | xpa(i)) ⇐⇒ Xi ⊥ Xnd(i) | Xpa(i) for all i

factorization ⇐⇒ conditional independence

▶ RHS in words: Xi is conditionally independent of its non-descendants given
its parents
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Conditional Independence Implies Factorization
Assume Xi ⊥ Xnd(i) | Xpa(i) for all i
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Review of Argument
0. Assume Xi ⊥ Xnd(i) | Xpa(i) for all i
1. Number nodes according to a topological ordering and apply the chain rule

p(x) =
N∏

i=1
p(xi|x{1,...,i−1})

2. Nodes {1, . . . , i − 1} must be non-descendants of i because they come earlier in
the topological order. Therefore we can split these nodes into parents and other
nodes which are all non-descendants:

p(x) =
N∏

i=1
p(xi|xpa(i), x{1,...,i−1}\pa(i))

3. Now simplify using Xi ⊥ X{1,...,i−1}\pa(i)|Xpa(i), which is true because nodes
{1, . . . , i − 1} \ pa(i) are non-descendants

p(x) =
N∏

i=1
p(xi|xpa(i))
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Factorization Implies Conditional Independence

To show this, first we’ll argue that marginalizing descendants in a Bayes net is easy:

Warmup: suppose j is a node with no children in a Bayes net (a “leaf”). Then

p(x−j) =
∏

i ̸=j

p(xi|xpa(i))

In words, we can marginalize xj by dropping the factor p(xj |xpa(j)) to get a Bayes net
with one less node.

This is only true for leaf nodes. Marginalizing non-leaf nodes may be very hard!
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Proof:
p(x−j) =

∑

xj

p(x−j , xj)

=
∑

xj

p(xj |xpa(j))
∏

i ̸=j

p(xi|xpa(i))

=
∏

i ̸=j

p(xi|xpa(i)) ·
∑

xj

p(xj |xpa(j))
︸ ︷︷ ︸

1

Pushing the sum inside in the last line is possible because j is a leaf, so j /∈ pa(i) for
any i.
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Marginalizing a Set of Descendants

Lemma: suppose A and B partition the nodes of a Bayes net and there is no path from
B to A. Then

p(xA) =
∑

xB

p(xA, xB) =
∏

i∈A

p(xi|xpa(i))

Proof idea: at least one node in B is a leaf. Eliminate it using the warmup lemma and
then repeat.
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Factorization Implies Conditional Independence
Assume p(x) = ∏N

i=1 p(xi | xpa(i)). Then for any i

p(xi|xnd(i)) =
p(xi, xnd(i))

p(xnd(i))

=
p(xi|xpa(i)) · ∏

j∈nd(i) p(xj |xpa(j))∏
j∈nd(i) p(xj |xpa(j))

Use lemma twice

= p(xi|xpa(i))

This demonstrates that Xi ⊥ Xnd(i)|Xpa(i) for all i.
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