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Discrete Distributions Events vs Random Variables

» Sample space
> Atomic probability p(w) for all w € © » A random variable X is a a mapping from Q to Val(X)
p(w) >0, Z plw)=1 » But: for any random variable X, we can also define the probability distribution
wen with sample space Q = Val(X) and atomic probabilities px (z). This is the
» Events A C Q (only things that have probabilities!) distribution of .
> If we only care about events involving X, it's easier to just define the distribution
P(A) = Z p(w) of X without using a different underlying probability space
weA
> If we care about multiple random variables, we can similarly define their joint
» Random variable X : Q — Val(X) has probability mass function (PMF) distribution
px(z) =P(X(w)=2)=P(X =x)
3/25 4/25
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Random Variables and Data Sets

In ML and stats, probability distributions are defined over records described by multiple
attributes modeled as random variables. This leads to joint distributions.

Conditional Independence

Joint Distributions Gender Blood Pressure Cholesterol Heart Disease
Male Med Low No
Male Hi Hi Yes
Male Med Med Yes
Male Med Hi No
Female Med Low No
Male Low Med No
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éoén.to[o)istributions Rules of Probabilit Conditional Independenc Re v Joooinot.%istribu[ions Rules of Probabilit; Conditional Independenc
Joint Probability Distributions Joint Distributions: Heart Disease Example
Example: The joint distribution over random variables Gender, BloodPressure,
» The joint distribution of random variables X1,..., X is a probability distribution Cholesterol and HeartDisease is given by a table like this:
over their canonical sample space
> The canonical sample space Q of X1,..., Xy is the Cartesian product of their Gender  BloodPressure  Cholesterol  HeartDisease P
domains Q = Val(X;) x ... x Val(Xy). F L L N 0.0127
F L L Y 0.0007
> An element of € is a joint assignment (z1,...,ZN) F L M N 0.0098
> The joint probability mass function of Xy,..., Xy is F L M Y 0.0009
F L H N 0.0087
p(m17,..7xN):P(Xlle’.”’XN:xN) F L H Y 0.0010
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Random Vectors

> It's convenient to use vector-valued random variables X = (X7, ..., Xx) (or
“random vectors”) and assignments x = (z1,...,ZN):

P(XZX) =P(X1 ZJJ],...,XN IIL'N)

» The PMF is px (x) or just p(x)

» This is just notation: it means the same thing as a joint distribution over
(X1,...,XN)

» Notation: use X_; and x_; for vectors excluding X; or z;

Review Joint Distributions Rules of Probability
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Marginal Distributions Marginal Distributions: Heart Disease Example
> Suppose we have a joint distribution P(X = x,Y = y). Given a joint distribution on G, BP,C, HD, we obtain the marginal probability
P(G=M,BP =H,C = H) as follows:
» P(X =x) is called a marginal distribution. How can we find P(X = x)?
P(G=M,BP=H,C=H)= Y. P(G=MBP=HC=HHD=h)
he{Y,N}
PX=x)= > PX=xY=y) =P(G=M,BP=H,C=HHD=Y)
yeVal(Y) +P(G=M,BP=H,C=HHD=N)
= > - > PXi=a,..,Xn=znY1=y1,. Y = yn) =0.050 + 0.005
y1€Val(Yr)  ymeVal(Yy)
Gender  BloodPressure  Cholesterol  HeartDisease P
M H H % 0.050
M H H N 0.005
M H M v 0.045
M H M N 0.008
11/25 12/25




Distributions Rules of Probability

00080000

al Independence

Conditional Distributions

» Joint distributions are useful because we can use them to answer queries like “What
is the probability that Y =y given that | observed X = x?":

PX=xY=y)

PX=xY=y)

Z PX=xY=y)
y€EVal(Y)

> Write p(y|x) to denote the PMF of Y given X = x

Rules of Probability
00000 00008000

Review Joint Distributions

Conditional Distributions: Heart Disease Example

P(G=M,BP=H,C=H HD=Y)

P(HD=Y|G=M,BP=H,C = H) = FC-MBP-HC=H

0.050
"~ 0.050 4+ 0.005 091
Gender BloodPressure Cholesterol HeartDisease P
M H H Y 0.050
M H H N 0.005
M H M Y 0.045
M H M N 0.008

tional Independence
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Chain Rule Chain Rule: Heart Disease Example
» By rearranging the definition of conditional probability, we get the chain rule:
p(x,¥) = p(y|x)p(x) We can apply the chain rule using any ordering of the variables:
» Applying the chain rule repeatedly to a random vector X gives: p(g,bp, ¢, hd) = p(hd|c, bp, g)p(c|bp, 9)p(bp|g)p(9)
P(X) = p@N |21 ooy 2N 1)1, oo TN 1) p(g,bp, ¢, hd) = p(g|bp, ¢, hd)p(bple, hd)p(c|hd)p(hd)
(g, bp, ¢, hd) = p(c|hd, g, bp)p(hd|g, bp)p(gl|bp)p(bp)
=p(an|21, .y aN-1)P(@N-1|T1, s *N—2) - - p(23]|22, T1)P(T2|T1)P(21)
15/25 16/25




Review vint Distributions Rules of Probability Conditional Independence

,,,,, 00000008

Bayes' Rule

» By using the definition of conditional probability twice, we obtain one of the most
important equations in probability theory, Bayes' Rule:
_p(x,y) _ p(yx)p(x)
p(xly) = =
p(y) p(y)

> Bayes' rule lets us compute p(x|y) from a joint distribution specified by p(x) and
P(y[x)-

17/25

Conditional Independence
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Conditional Independence
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Joint Distributions Rules of Probabilit Conditional Independence
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The solution to the problem of exponential-sized joint distributions is the use of
compact probabilistic models.

» Bayesian networks achieve compactness by exploiting the chain rule and asserting
(conditional) independence relations

> As a result, Bayesian networks can express high-dimensional distributions as
products of simpler factors.

19/25
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Marginal Independence

X1Y < p(x,y) = p)p(y)

X1Y = p(xly) = p(x)

XL1Y < p(ylx) =p(y)

20/25
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Next Time

Next time, we'll discuss factorization and conditional independence in Bayesian networks.
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