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Discrete Distributions▶ Sample space Ω▶ Atomic probability 𝑝(𝜔) for all 𝜔 ∈ Ω𝑝(𝜔) ≥ 0, ∑𝜔∈Ω 𝑝(𝜔) = 1
▶ Events 𝐴 ⊆ Ω (only things that have probabilities!)𝑃(𝐴) = ∑𝜔∈𝐴𝑝(𝜔)
▶ Random variable 𝑋 ∶ Ω → Val(𝑋) has probability mass function (PMF)𝑝𝑋(𝑥) = 𝑃(𝑋(𝜔) = 𝑥) = 𝑃(𝑋 = 𝑥)
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Events vs Random Variables

▶ A random variable 𝑋 is a a mapping from Ω to Val(𝑋)▶ But: for any random variable 𝑋, we can also define the probability distribution
with sample space Ω = Val(𝑋) and atomic probabilities 𝑝𝑋(𝑥). This is the
distribution of 𝑋.▶ If we only care about events involving 𝑋, it’s easier to just define the distribution
of 𝑋 without using a different underlying probability space▶ If we care about multiple random variables, we can similarly define their joint
distribution
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Random Variables and Data Sets

In ML and stats, probability distributions are defined over records described by multiple
attributes modeled as random variables. This leads to joint distributions.

Gender Blood Pressure Cholesterol Heart Disease
Male Med Low No
Male Hi Hi Yes
Male Med Med Yes
Male Med Hi No

Female Med Low No
Male Low Med No
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Joint Probability Distributions

▶ The joint distribution of random variables 𝑋1,… ,𝑋𝑁 is a probability distribution
over their canonical sample space▶ The canonical sample space Ω of 𝑋1,… ,𝑋𝑁 is the Cartesian product of their
domains Ω = Val(𝑋1) × ... × Val(𝑋𝑁).▶ An element of Ω is a joint assignment (𝑥1,… , 𝑥𝑁)▶ The joint probability mass function of 𝑋1,… ,𝑋𝑁 is𝑝(𝑥1,… , 𝑥𝑁) = 𝑃(𝑋1 = 𝑥1,… ,𝑋𝑁 = 𝑥𝑁)
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Joint Distributions: Heart Disease Example

Example: The joint distribution over random variables Gender, BloodPressure,
Cholesterol and HeartDisease is given by a table like this:

Gender BloodPressure Cholesterol HeartDisease P
F L L N 0.0127
F L L Y 0.0007
F L M N 0.0098
F L M Y 0.0009
F L H N 0.0087
F L H Y 0.0010
… … … … …
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Random Vectors

▶ It’s convenient to use vector-valued random variables X = (𝑋1, ...,𝑋𝑁) (or
“random vectors”) and assignments x = (𝑥1, ..., 𝑥𝑁):𝑃(X = x) = 𝑃(𝑋1 = 𝑥1, ..., 𝑋𝑁 = 𝑥𝑁)

▶ The PMF is 𝑝X(x) or just 𝑝(x)▶ This is just notation: it means the same thing as a joint distribution over(𝑋1,… ,𝑋𝑁)▶ Notation: use X−𝑖 and x−𝑖 for vectors excluding 𝑋𝑖 or 𝑥𝑖
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Marginal Distributions▶ Suppose we have a joint distribution 𝑃(X = x,Y = y).▶ 𝑃(X = x) is called a marginal distribution. How can we find 𝑃(X = x)?

𝑃(X = x) = ∑
y∈Val(Y) 𝑃 (X = x,Y = y)= ∑𝑦1∈Val(𝑌1)⋯ ∑𝑦𝑀∈Val(𝑌𝑀) 𝑃 (𝑋1 = 𝑥1, ..., 𝑋𝑁 = 𝑥𝑁, 𝑌1 = 𝑦1, ..., 𝑌𝑀 = 𝑦𝑀)
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Marginal Distributions: Heart Disease Example
Given a joint distribution on 𝐺,𝐵𝑃 ,𝐶,𝐻𝐷, we obtain the marginal probability𝑃(𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻) as follows:

𝑃(𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻) = ∑ℎ∈{𝑌 ,𝑁} 𝑃 (𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻,𝐻𝐷 = ℎ)= 𝑃(𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻,𝐻𝐷 = 𝑌 )+ 𝑃(𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻,𝐻𝐷 = 𝑁)= 0.050 + 0.005

Gender BloodPressure Cholesterol HeartDisease P
M H H Y 0.050
M H H N 0.005
M H M Y 0.045
M H M N 0.008
… … … … …
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Conditional Distributions

▶ Joint distributions are useful because we can use them to answer queries like
“What is the probability that Y = y given that I observed X = x?”:

𝑃(Y = y|X = x) = 𝑃(X = x,Y = y)𝑃 (X = x)= 𝑃(X = x,Y = y)∑
y∈Val(Y) 𝑃 (X = x,Y = y)

▶ Write 𝑝(y|x) to denote the PMF of Y given X = x
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Conditional Distributions: Heart Disease Example

𝑃(𝐻𝐷 = 𝑌 |𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻) = 𝑃(𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻,𝐻𝐷 = 𝑌 )𝑃(𝐺 = 𝑀,𝐵𝑃 = 𝐻,𝐶 = 𝐻)= 0.0500.050 + 0.005 = 0.91
Gender BloodPressure Cholesterol HeartDisease P

M H H Y 0.050
M H H N 0.005
M H M Y 0.045
M H M N 0.008
… … … … …
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Chain Rule

▶ By rearranging the definition of conditional probability, we get the chain rule:𝑝(x,y) = 𝑝(y|x)𝑝(x)
▶ Applying the chain rule repeatedly to a random vector X gives:𝑝(x) = 𝑝(𝑥𝑁|𝑥1, ..., 𝑥𝑁−1)𝑝(𝑥1, ..., 𝑥𝑁−1)⋮= 𝑝(𝑥𝑁|𝑥1, ..., 𝑥𝑁−1)𝑝(𝑥𝑁−1|𝑥1, ..., 𝑥𝑁−2)⋯ 𝑝(𝑥3|𝑥2, 𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥1)
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Chain Rule: Heart Disease Example

We can apply the chain rule using any ordering of the variables:𝑝(𝑔, 𝑏𝑝, 𝑐, ℎ𝑑) = 𝑝(ℎ𝑑|𝑐, 𝑏𝑝, 𝑔)𝑝(𝑐|𝑏𝑝, 𝑔)𝑝(𝑏𝑝|𝑔)𝑝(𝑔)𝑝(𝑔, 𝑏𝑝, 𝑐, ℎ𝑑) = 𝑝(𝑔|𝑏𝑝, 𝑐, ℎ𝑑)𝑝(𝑏𝑝|𝑐, ℎ𝑑)𝑝(𝑐|ℎ𝑑)𝑝(ℎ𝑑)𝑝(𝑔, 𝑏𝑝, 𝑐, ℎ𝑑) = 𝑝(𝑐|ℎ𝑑, 𝑔, 𝑏𝑝)𝑝(ℎ𝑑|𝑔, 𝑏𝑝)𝑝(𝑔|𝑏𝑝)𝑝(𝑏𝑝)
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Bayes’ Rule

▶ By using the definition of conditional probability twice, we obtain one of the most
important equations in probability theory, Bayes’ Rule:

𝑝(x|y) = 𝑝(x,y)𝑝(y) = 𝑝(y|x)𝑝(x)𝑝(y)▶ Bayes’ rule lets us compute 𝑝(x|y) from a joint distribution specified by 𝑝(x) and𝑝(y|x).
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Conditional Independence
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Probabilistic Models

The solution to the problem of exponential-sized joint distributions is the use of
compact probabilistic models.▶ Bayesian networks achieve compactness by exploiting the chain rule and asserting

(conditional) independence relations▶ As a result, Bayesian networks can express high-dimensional distributions as
products of simpler factors.
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Marginal Independence

X⊥Y ⟺ 𝑝(x,y) = 𝑝(x)𝑝(y)
X⊥Y ⟺

𝑝(x|y) = 𝑝(x)

X⊥Y ⟺

𝑝(y|x) = 𝑝(y)
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Card Example I

Draw a random card: is value ⟂ color?

Yes
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Card Example II

What about with this deck? Is value ⟂ color?

No
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Conditional Independence

X⊥Y|Z ⟺ 𝑝(y,x|z) = 𝑝(x|z)𝑝(y|z)
X⊥Y|Z ⟺

𝑝(x|y, z) = 𝑝(x|z)

X⊥Y|Z ⟺

𝑝(y|x, z) = 𝑝(y|z)
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Card Example III

Is value ⟂ color | facecard?

Yes
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