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Discrete Distributions

» Sample space 2
» Atomic probability p(w) for all w € Q

p@) 20, Y pw)=1

we)

> Events A C Q (only things that have probabilities!)

P(A) =3 »pw)

weA

» Random variable X : Q — Val(X) has probability mass function (PMF)
B Py (3)

P pr(2)

py(r) = P(X(w) = z) = P(X = x)
PO pla)

px)
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vs Random Variables

» A random variable X is a a mapping from 2 to Val(X)

But: for any random variable X, we can also define the probability distribution
with sample space © = Val(X) and atomic probabilities py(z). This is the
distribution of X.

If we only care about events involving X, it's easier to just define the distribution
of X without using a different underlying probability space

If we care about multiple random variables, we can similarly define their joint

distribution ———— = —
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Random Variables and Data Sets

In ML and stats, probability distributions are defined over records described by multiple
attributes modeled as random variables. This leads to joint distributions.

X, X ottiba Yo Yy

Joint Distributions Gender Blood Pressure  Cholesterol Heart Disease
Male Med Low No
Mrcwc}\ —~ Male Hi Hi Yes
Male Med Med Yes
Male Med Hi No
Female Med Low No
Male Low Med No
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Joint Probability Distributions

» The joint distribution of random variables X, ..., X is a probability distribution
over their canonical sample space

» The canonical sample space §2 of X, ..., X is the Cartesian product of their
domains = Val(X;) x ... x Val(Xy).

>xN)

» The joint probability mass function of X, ..., Xy is

» An element of  is a joint assignment (x, ...

7$N) :P(Xl :mlv"'aXN :‘TN)
A\

I,QI,,‘ Ul
om, ¥ BB )

Py, ...
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Joint Distributions: Heart Disease Example

Example: The joint distribution over random variables Gender, BloodPressure,
Cholesterol and HeartDisease is given by a table like this:

Gender BloodPressure Cholesterol HeartDisease P
Jemﬁ; F L L Y 0.0007
F L M N 0.0098
F L M Y 0.0009
LY /F L H N 0.0087
F L H Y 0.0010

é“ﬁ‘}cne"\{_:d\ n # RUs
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Random Vectors
» It's convenient to use vector-valued random variables X = (X, ..., X ) (or
“random vectors”) and assignments x = (24, ..., Zy):
Rules of Probability
PX=x)=P(X,=x,.. Xy =zy)
» The PMF is px(x) or just p(x)
» This is just notation: it means the same thing as a joint distribution over
(X1, Xn)
» Notation: use X_; and x_; for vectors excluding X, or x;
(r
i N .
(%, Xy Yoty Kty oK)
9/37 10/37
Review Joint Distributions Rules of Probability Conditional Independence Review Joint Distributions Rules of Probability Conditional Independence
000 00000 0®000000 0000000 000 00000 0O@00000 0000000

Marginal Distributions RO AT T

» Suppose we have a joint distribution P(X =x,Y =y).

» P(X = x) is called a marginal distribution. How can we find P(X = x)?

> P(Y;"/ ‘7)

\/e\}m[(Y)

p(X%@ =

11/37

Marginal Distributions: Heart Disease Example
Given a joint distribution on G, BP,C', HD, we obtain the marginal probability
P(G=M,BP=H,C = H) as follows:

Gender  BloodPressure

M H
-
H

H

M

I

0.045
0.008

Wse P
Y 0.050 V)
N 0.0057 Gaosh
Y
N

==

12/37




Ei i J' E)\st' butions E{)L‘J)Igs.gfolz’)rgbability ;\\ Independence Ei\\ew :Jogvgtol?;stmbnt\ons Iglélgsor;fozmbablhty Szgnongtgzv;\ Independence
Conditional Distributions {2~ Conditional Distributions: Heart Disease Example
» Joint distributions are useful becatise-weea em to answer queries like P(G=M,BP=H,C=H,HD=Y)
“What is the probability that Y =y given that | observed X = x7?": PHD =Y|G=M,BP =H,C=H) = P(G=M,BP=H,C=H)
Y o« 0.050
_ — =—— =091
PIY —yX =x) = LX=xY=y) -7 0.050 + 0.005
P(X =x)
PX=x,Y=y) Gender BloodPressure Cholesterol HeartDisease P
fre  f yera) M H H N 0.005
by M H M Y 0.045
» Write p(y|)g to denote the PMF of Y given X = x M H M N 0.008
PY(X(\//[%)
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Chain Rule Chain Rule: Heart Disease Example
@ be, < hd}‘ P( ) pClop, < hd | ?)
» By rearranging the definition of congitional probability, we get the chain rule: 7’ = 9(33 ?(bﬁl hij b({liﬁ[ >
0(\(%@ 1=y)~ (V‘V [\(‘%) Plx=x) We can apply the chain rule using any%gagrlﬁg 0 arlabe @)P bl /J:\p
( p(x,y) = p(ylx)p(x)
Peyly) = P (%) P+
) %
» Applying the chain rule repeatedly to a random vector X gives: p(g,bp, ¢, hd) = p(hd|c, bp, g)p(c|bp, 9)p(bplg)p(g)
Kiy¥a X p(g,bp, ¢, hd) = p(g|bp, ¢, hd)p(bp|c, hd)p(c|hd)p(hd)
(x) play|ey, ey )p(Tys - TN q)
p(g,bp, ¢, hd) = p(c|hd, g, bp)p(hd|g, bp)p(g|bp)p(bp)
=p@y|Ty, ey Ty )P(T N1 [T, s By_o) e P(T3] 0, 1) p(2a |21 )p(1)
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Bayes' Rule
X
) plyl) — pCry)
» By using the definition of conditional probability twice, we obtain one of the most
important equations in probability theory, Bayes' Rule: ..
P a P Y v my Conditional Independence
_p(xy) _pylxp(x) _ elyldpi)
PO =T — )
Zp( X)f(ylx)
» Bayes' rule lets us compute p(x|y) from a joint distribution specified by p(x) and
p(ylx).
17/37 18/37
Bayesian Networks Revie Joint D\str\b\\t\ovvs B\yl\?w(ifj:rfgba\nh:v g%r:ﬁoitéoongl Independence E%;\N\/\esww.illl\lfﬁ/ork:N

Rules of Probability Conditional Independence
e 0000

Review
""" 00000000 080!

ocoo 00000

Probabilistic Models

The solution to the problem of exponential-sized joint distributions is the use of
compact probabilistic models.

» Bayesian networks achieve compactness by exploiting the chain rule and asserting
(conditional) independence relations

» As a result, Bayesian networks can express high-dimensional distributions as
products of simpler factors.

0000000000000
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Marginal Independence

R(X=% Y=y) = P(X=)P(¥=)
ﬁS( s (hc”ep+n uJ‘F\r"l

X1Y < p(x,y) = p(x)p(y)
Py plxly)

XY < p(%l7> ’;p(K)

VXJ\/

KN\, 2

X1Y < P(\/fx)—: P(\/>
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