COMPSCI 688: Probabilistic Graphical Models

Lecture 1: Course Overview

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)
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Motivating Example: Typo Corrector

Suppose we have a database of words with at most D letters, such as
duck, pile,an x x, dive, -

where « is used to pad words with less than D letters (in this example D = 4).
Problem:

» We see "“noisy” words: each letter has a 25% chance of corrupted to any random
letter
» Given a noisy word, what is original clean work?

A probabilistic approach will have 3 steps...
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Step 1: Distribution of Words

» Build a distribution p(x) over all length D sequences in the database
» Each sequence represented by @ = (21, xq, -, xp) with ; € {a,b, -, z,%}.
» p(z) is a measure of how likely x is to occur as an English word.

Example
p(a,a,a,a) = 0.000001

p(a,a,a,b) = 0.000002

p(tv a, C, O) = 0.00531
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Step 2: Conditional Distribution of Noisy Words

We build a conditional distribution p(y|x) of the “noisy” sequences y given “clean”
ones x. In this case, the conditional distribution is

D
1
= . Iy = x. 2 — .
i) =1 (075 5ty = ] + 0.25 x -

» [[-] is indicator
» Each position ¢ corrupted independently:
» with probability 0.75, keep x;
» with probability 0.25, select a random letter
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Step 3: Combine to Make Predictions

Given noisy sequence y, want to predict a clean sequence x. Bayes' rule says:

p(2)p(ylz)

plzly) = @)

Predict the most likely = as
arg max p(zly) = arg max p(z)p(y|z),
xT xr

E.g., use brute force to search over all . But wait:

» how much time?
» how big does our data set need to be?
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Brute Force Algorithm

-

For all &, compute score(z) = p(z)p(y|x).
Return  with highest score.

N

How much time?

Is there a smarter algorithm?

How many free parameters in p(z)?

How big would our data set need to be to estimate it?

vVvyvyy

Lesson: for large D, we need structure
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277 is big

D 27)P

1 27

2 729

5 14, 348, 489

10 | 205,891, 132, 094, 649
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Graphical Models = Factorized Distributions
Suppose p(z) has a factorized form:

p(x) = f(@1,29) f(T9, 23) - f(Tp_q,7p).

What would this buy us?

» Statistics: only ~ (D — 1)(27)2 free parameters
» Computation: can find the MAP solution in ~ (D — 1)(27)? operations (dynamic
programming)

Factorization is great! But when is it “valid”"? When p(x) has conditional
independencies (Cls)...

Probability Review
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Probabilistic Graphical Models Main idea

» PGMs = structured probability distributions — main Al tool for representing,
constructing and reasoning about large-scale, high dimensional systems under
uncertainty.
» Many applications: » Represent the structure of high-dimensional joint probability distributions using
raphs (graph structure models conditional indpendencies
» In CS: speech recognition, image recognition/labeling, action recognition, modeling graphs (grap P )
sensor networks, social network analysis, recommender systems, computational » Learn the distribution from data
biology, medical decision making, information extraction, text modeling, .. . . . ) )
» In science: Bayesian statistics, probabilistic programming, ecology, epidemiology, > Perform inference to efficiently answer probability queries (i.e., compute
physics, economics, .. conditional distributions) using the graph structure
> State of the art for many CS tasks (images, text, etc.) before 2012. Now, deep
learning usually wins for predictive tasks with enough data.
» Still widely used in Bayesian statistics and in components of Al systems; ideas
underlie many different ML/Al models
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Bayesian Networks and Markov Networks

The two most common types of probabilistic graphical models are Bayesian Networks
and Markov Networks.

Bayesian Networks Markov Random Fields

P(A) f(A,D)

P(B|A) P(ClA)
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Probabilistic Graphical Models vs Machine Learning

» Probabilistic graphical models (PGMs) are a sub-topic of machine learning

» PGM models exist for essentially all main ML tasks: classification, regression,
clustering, dimensionality reduction, ..

» Many classical ML models are special cases of PGMs

» Knowledge of PGMs allows you to build customized models for dealing with
complex, uncertain, and partially observed data.
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Course Goals Prerequisites
;jl'hg am Oflth's coursz s tT devetljo;l)).ilzhe_ knowlic.lgel anddsll<|lls necelssar)élto effe;:vely Formally, none. However, we will move quickly through a lot of material. Familiarity
esign, imp ement and apply probabilistic graphical models to real problems. The with the following material is highly recommended:
course will cover:
. » Probability and statistics
» Bayesian and Markov networks .
» Calculus and linear algebra
» Exact and approximate inference methods for answering probability queries and » Basic algorithms and data structures
making predictions » Numerical optimization
. . . » Machine Learning
» Estimation of the parameters and structure of graphical models from data
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Programming and Computing

» Need access to computing to complete regular assignments (any moderately
recent laptop/desktop should do).

» Python strongly recommended. | recommend using an Anaconda distribution.
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Logistics and course details: Textbooks

» Instructor: Dan Sheldon There i - ed book. b ol | di i b red i
» TAs: Iman Deznabi. Shakir Sahibul ere.ls no required book, but optional supplementary readings will be assigned in two
» Lectures: M/W 4:00-5:15pm books:
» Instructor Office Hours: Tuesday 1-2pm » MLPP: Machine Learning: A probabilistic Perspective. Murphy. (Primary; free
» Course Website: eBook for UMass students)
https://people.cs.umass.edu/~sheldon /teaching/cs688/index.html o ) .

. ST » PGM: Probabilistic Graphical Models by Koller and Friedman. (Supplemental)
» Discussion: Piazza
» Homework Submission: Gradescope The readings will cover similar material.
» Course e-Mail: Piazza private message
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Evaluation

The evaluation for the course will be based on quizzes, assignments, and a final exam.
» Homework Assignments 60%
» Final Exam 30%
» Quizzes 10%
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Course Policies

This is a large class. Course policies are applied with exceptions only in exceptional
situations. Read the course syllabus for details of:

» Homework submission and late days
» Homework collaboration

» Academic honesty

Probability Review

» Regrading
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Echo360 Lecture Capture
» Lectures are recorded and will be available after 3-4 days Probability Review
» There is form to request access sooner (see course webpage)
» Usually 1-2 recordings per semester fail
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Discrete Probability Distribution

> A discrete distributions models a random experiment (e.g., a coin flip, roll of the
die, shot of an arrow) with a finite or countable number of outcomes

» The sample space €2 is the set of outcomes

» A probability distribution P on €) assigns a non-negative real number or atomic
probability p(w) to each outcome w € , such that

pw) =0, Y plw) =1

we
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> An event A C ) is a subset of the sample space

» The probability of an event if the sum of the probabilities of its outcomes:

P(A) =3 pw)

weA

» Note: events are the only things that have probabilities, ever

» When € is not discrete, we need to be more careful about defining events and
their probabilities (measure theory)
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Example

Imagine the random experiment of rolling a fair six-sided die:
» Sample Space: Q = {1,2,3,4,5,6}
» Consider the events A = {1,2} and B = {2}.
» Then P(A)=1/3, P(B)=1/6
» Also, P(ANB) =1/6, P(AUB) =1/3
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Random Variables

Events can be cumbersome. With PGMs, we'll usually work with random variables.
A random variable X is a mapping X : Q@ — D

» D is some set (e.g., the integers)
» Notation: D = Val(X), the set of values of X

A random variable partitions (2:

» For each x € D, we have the event [X = 2] = {w: X(w) = z}
» It's probability is

PX =z)=P({w: X(w) =z}) =
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Example: Rolling two Six-Sided Dice

Say X is the sum of the two fair dice. Then
» Sample Space: Q = {(wy,wy)|wy,wy € {1,...,6}} ={(1,1),(1,2),...,(6,6)}
» Domain D = Val(X) = {2,...,12}
» Mapping: X((wy,w;)) = w; +wy
» Example Event: {X =4} = {(1,3),(2,2),(3,1)}
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Probability Mass Function

The probability mass function (PMF) of a discrete random variable X is a function py
that gives the probability of the event [X = x| for every z € Val(X):

px(x) = P(X =)

Thought experiment: the PMF also satisfies the defintion of a discrete probability

distribution
> pla)=1
zeVal(X)

Why didn't we just use Val(X) as the sample space?

30/31

Logistics Probability Review
000000 0000000e

Next Time

» A bit more probability
» joint distributions
» rules of probability
» independence and conditional independence

» Bayes' nets
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