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Motivating Example: Typo Corrector

Step 1: Distribution of Words  p (*)

Suppose we have a database of words with at most D letters, such as

fiue wol
» Build a distribution p(z) over all length D sequences in the database

. X7
» Each sequence represented by © = (2, 25, -,z p) with z; € {a,b, ~--,z,*}.Z

» p(z) is a measure of how likely x is to occur as an English word.
where « is used to pad words with less than D letters (in this example D = 4).

Example
Problem:

duck, pile,an x %, dive, -

/ﬁ‘i’)ﬁ‘f ¥ KK Yy \?(‘a
p(a,a,a,a) =10.000001 o
p(a,a,a,b) =[0.000002
» We see “noisy” words: each letter has a 25% chance of corrupted to any random .
letter
» Given a noisy word, what is original clean work?

a a q
oA = b
A A Q@ C

27

p(t7 a‘7 C7 O) =
A probabilistic approach will have 3 steps...

I EVS P
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Step 2: Conditional Distribution of Noisy Words (J(\/ 1)
K= core _ [OWE (Ufﬁ
RN Obgerued Yo woud

Covk
We build a conditional distribution p€y|1’) of the “noisy” sequences y given “clean”
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Step 3: Combine to Make Predictions p(x), P(yh() =7 ply 73
P (%1y)

Given noisy sequence y, want to predict a clean sequence x. Bayes' rule says:

ones x. In this case, the conditional distribution is (33| ) = P(x)P(?JLT) aaad (9’
plyelc) =" 2 o b
g ) caa
D, T~ <=
_ _ 1 Predict the most likely x as \/ 7 co\lAJ
p(ylx) = 11:[1 (0.75 x ly; = ;] +0.25 x ﬁ) . N
Pe (\f za ] %= a) = (.75 + OA('-F;:/ arg max p(zly) = arg max p(2)p(y|), coic
- x x
» [[-] is indicator ‘ oc( | 1 weef
» Each position ¢ corrupted independently: (lymolXE=a)= 025 27 .
> with probability 0.75, keep ; E.g., use brute force to search over all . But wait:
P with probability 0.25, select a random letter » how much time?
» how big does our data set need to be?
5/31 6/31
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Ceufp

Brute Force Algorith Y
rute Force Algorithm O{ﬁ:\a% P(«)P(ﬂﬂ

fun

For all &, compute score(z) = p(z)p(y|x).
Return x with highest score.

N

How much time? 9\7{1 — ;71)

Is there a smarter algorithm? nQ

How many free parameters in p(z)? 9:7D/ |

How big would our data set need to be to estimate it? 27 )7

vvyVvyy

D

Lesson: for Iarge@ we need structure

N
“lrigh -diwensiona pl<) 9(0,,5) P(‘?,b/5>
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277 is big

D (27)P

1 27

2 729

5 14, 348,489

10 | 205,891, 132,094, 649
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Graphical Models = Factorized Distributions
00%, 5%, %o %) P, 1) = O PIYglio)p ()
Suppose p(z) has a factorized form:

(o [GNe] o

Ve c r 4
p(z) = f‘(xl,xg)f,éxg,xg,) ~ f(xp_1,2p).

o
Ny
» Statistics: only ~ (D — 1)(27)2 free parameters

» Computation: can find the MAP solution in ~ (D — 1)(27)? operations (dynamic
programming) 0“7“:“" P(x(“o

What would this buy us?

Factorization is great! But when is it “valid”?

when dst ﬁﬁ‘l"‘l’é‘Fl‘CS ccuﬁ:‘\'ﬂ Cd"‘dlhc’\’\d
{MG P(op(,r‘hej
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Probabilistic Graphical Models

» PGMs = structured probability distributions — main Al tool for representing,
constructing and reasoning about large-scale, high dimensional systems under
uncertainty.

» Many applications:

» In CS: speech recognition, image recognition/labeling, action recognition, modeling
sensor networks, social network analysis, recommender systems, computational
biology, medical decision making, information extraction, text modeling, ..

P In science: Bayesian statistics, probabilistic programming, ecology, epidemiology,
physics, economics, ...

> State of the art for many CS tasks (images, text, etc.) before 2012. Now, deep
learning usually wins for predictive tasks with enough data.

» Still widely used in Bayesian statistics and in components of Al systems; ideas

underlie many different ML/Al models —> detfusien
Flow
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» Represent the structure of high-dimensional joint probability distributions using
graphs (graph structure models conditional indpendencies)

Main idea

» Learn the distribution from data

» Perform inference to efficiently answer probability queries (i.e., compute
conditional distributions) using the graph structure

p(=ly)
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Bayesian Networks and Markov Networks

The two most common types of probabilistic graphical models are Bayesian Networks
and Markov Networks.
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Probabilistic Graphical Models vs Machine Learning

» Probabilistic graphical models (PGMs) are a sub-topic of machine learning

Bayesian Networks Markov Random Fields )
» PGM models exist for essentially all main ML tasks: classification, regression,
clustering, dimensionality reduction, ..
P(A) f(A.D) » Many classical ML models are special cases of PGMs
PBIA) P(CIA) ?E ° . » Knowledge of PGMs allows you to build customized models for dealing with
< ‘S complex, uncertain, and partially observed data.
I‘ : f(8,C) E
&tugc{’ﬂd\ Mmdivecl‘fd \
apeled $tats uicm[(v WoR qLneia
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Course Goals Prerequisites
;il'het aim Oflth's coursz s t? devellaopb.il:he_ knowlic.lgel anddsllﬂlls necelssar)l/alto efFe;:ver Formally, none. However, we will move quickly through a lot of material. Familiarity
esign, imp ement and apply probabilistic graphical models to real problems. The with the following material is highly recommended:
course will cover:
5 . d Mark K » Probability and statistics
> Bayesian an arkov: networks » Calculus and linear algebra
0(*( "r Exact and approximate inference methods for answering probability queries and » Basic algorithms and data structures
making predictions < Mavkoy chain teuvte Cavle (McMc) » Numerical optimization
Yaviational wnfelence (Vr » Machine Learning
» Estimation of the parameters and structure of graphical models from data
Gouussian g ocesics
e . / .
P Broader Pfdbo«lo‘ lisne ML i}dwwq]('zmﬁ A
D(“PFV\%[(C'JV\ K
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Programming and Computing

> Need access to computing to complete regular assignments (any moderately
recent laptop/desktop should do).

» Python strongly recommended. | recommend using an Anaconda distribution.

bability Revie
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Logistics and course details: Textbooks
» Instructor: Dan Sheldon There i - ed book. b ol | di " red i
» TAs: Iman Deznabi, Shakir Sahibul ! elr(e.ls no required book, but optional supplementary readings will be assigned in two
» Lectures: M/W 4:00-5:15pm e Dy 92 00ks:
. !
» Instructor Office Hours: Tuesday 1-2pm —7 7229 » MLPP: Machine Learning: A probabilistic Perspective. Murphy. (Primary; free
» Course Website: eBook for UMass students)
https://people.cs.umass.edu/~sheldon /teaching/cs688/index.html e . .
. L. » PGM: Probabilistic Graphical Models by Koller and Friedman. (Supplemental)
» Discussion: Piazza
» Homework Submission: Gradescope The readings will cover similar material.
» Course e-Mail: Piazza private message
Canues
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Evaluation

The evaluation for the course will be based on quizzes, assignments, and a final exam.
» Homework Assignments 60%
» Final Exam 30%
» Quizzes 10%

Logistics
000080

Course Policies

This is a large class. Course policies are applied with exceptions only in exceptional
situations. Read the course syllabus for details of:

» Homework submission and late days — 3~ (ate Jm79
» Homework collaboration
» Academic honesty

» Regrading

21/31 22/31
:W(U”w g Example Ia%ggséigs. }" obability Review H) ating ‘Ewrv\:\— e ﬁroogg%igtgoReview
Echo360 Lecture Capture
» Lectures are recorded and will be available after 3—4 days Probability Review
> There is form to request access sooner (see course webpage)
» Usually 1-2 recordings per semester fail
p(\/) PLxIY) g;(y[»«)
kL ECBO
Ve
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Discrete Probability Distribution
O=GHTY =026

> A discrete distributions models a random experiment (e.g., a coin flip, roll of the
die, shot of an arrow) with a finite or countable number of outcomes

» The sample space €2 is the set of outcomes

» A probability distribution P on €) assigns a non-negative real number or atomic
probability p(w) to each outcome w € , such that

plw) =0, Y plw) =1

we

Probability Review
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eVueh = %919/6% ﬁful(c: lu*”?{%

» An event A C ) is a subset of the sample space

Probability Review

g Example
00 00®@00000

Events

» The probability of an event if the sum of the probabilities of its outcomes:

P(A) = ZP(W) = P(ﬂ -\'P(‘-{\) ép[e> - 75_

weA

» Note: events are the only things that have probabilities, ever

» When () is not discrete, we need to be more careful about defining events and
their probabilities (measure theory)

26/31
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Imagine the random experiment of rolling a fair six-sided die:
» Sample Space: Q = {1,2,3,4,5,6}
» Consider theLe‘\'/?nts A={1,2} and B = {2}.
> Then P(A) = 1/3, P(B) = 1/6
» Also, P(ANB)=1/6, P(AUB) =1/3
723 30,23
B A

Probability Review
00080000
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W' owteon Q
Yw) i measirement

Al usually work with random variables.

. > 3 2
Random Variables L2020

Events can be cumbersome. With PGMs,
A random variable X is a mapping X : Q@ — D

» D is some set (e.g., the integers)
» Notation: D = Val(X), the set of values of X

A random variable partitions €:

» For each = € D, we have the event [X = z] = {w: X(w) = 2}

» It's probability is
> pw)
w:X(w)=x

> 2
P(X =z)=P({w: X(w) =z}) =

N
S Pe(®
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Example: Rolling two Six-Sided Dice

Say X is the sum of the two fair dice. Then

Probability Review
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Wi, Wy
» Sample Space: 2 = {% ((, 1)} ((, 1); .,.j(l,é)/(‘), OJ“»A , (G)é)g

» Domain = Vm‘(*) = %3, 3, ) ’9*%
» Mapping: X(w) = X(w,ws) = W, +Ws
» Example Event: {X =4} = LL[ ((ﬂ)/ (}/})) (}I,)
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P, QDY(?’)J -y Px(”‘)

The probability mass function (PMF) of a discrete random variable X is a function px
that gives the probability of the event [X = z] for every z € Val(X):

Probability Mass Function

px(x) = P(X =)

Thought experiment: the PMF also satisfies the defintion of a discrete probability

distribution
> pla)=1
zeVal(X)

Why didn't we just use Val(X) as the sample space?
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Next Time

» A bit more probability
P joint distributions
» rules of probability
» independence and conditional independence

» Bayes' nets

Probability Review

0000000®
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