

Motivating Example
oooooooo

Course Overview
ooooooo

Logistics
oooooo

Probability Review
ooooooo

1 / 31

COMPSCI 688: Probabilistic Graphical Models

Lecture 1: Course Overview

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

Motivating Example
●oooooooo

Course Overview
ooooooo

Logistics
oooooo

Probability Review
ooooooo

2 / 31

Motivating Example

Motivating Example
oooooooo

Course Overview
ooooooo

Logistics
oooooo

Probability Review
ooooooo

3 / 31

Motivating Example: Typo Corrector

Suppose we have a database of words with at most D letters, such as

duck, pile, an ★, dive, ...

where ★ is used to pad words with less than D letters (in this example $D = 4$).

Problem:

- We see “noisy” words: each letter has a 25% chance of corrupted to any random letter
- Given a noisy word, what is original clean word?

A probabilistic approach will have 3 steps...

Motivating Example
●oooooooo

Course Overview
ooooooo

Logistics
oooooo

Probability Review
ooooooo

4 / 31

Step 1: Distribution of Words $p(x)$

*unobserved
true word*

- Build a distribution $p(x)$ over all length D sequences in the database
- Each sequence represented by $x = (x_1, x_2, \dots, x_D)$ with $x_i \in \{a, b, \dots, z, *\}$.
- $p(x)$ is a measure of how likely x is to occur as an English word.

Example

x_1	x_2	x_3	x_4	$p(x)$
a	a	a	a	1/27 ⁴
a	a	a	b	2/27 ⁴
a	a	a	c	3/27 ⁴
⋮	⋮	⋮	⋮	⋮
t	a	c	o	0.00531
⋮	⋮	⋮	⋮	⋮
a	a	b	a	2/27 ⁴
⋮	⋮	⋮	⋮	⋮

Motivating Example Course Overview Logistics Probability Review

Step 2: Conditional Distribution of Noisy Words $p(y|x)$

$x = \text{core} \rightarrow y = \underset{\substack{\text{core} \\ \text{cork} \\ \text{curf}}} \text{core curf}$ \uparrow *observed noisy word*

We build a conditional distribution $p(y|x)$ of the "noisy" sequences y given "clean" ones x . In this case, the conditional distribution is

$$p(y|x) = \prod_{i=1}^D \left(0.75 \times \mathbb{I}[y_i = x_i] + 0.25 \times \frac{1}{27} \right).$$

$\mathbb{I}[\cdot]$ is indicator

Each position i corrupted independently:

- with probability 0.75, keep x_i
- with probability 0.25, select a random letter

$\Pr(y_i = a | x_i = a) = 0.75 + 0.25 \cdot \frac{1}{27}$

$\Pr(y_i = b | x_i = a) = 0.25 \cdot \frac{1}{27}$

5 / 31

Motivating Example Course Overview Logistics Probability Review

Step 3: Combine to Make Predictions $p(x), p(y|x) \Rightarrow p(x, y) / p(x|y)$

Given noisy sequence y , want to predict a clean sequence x . Bayes' rule says:

$$p(x|y) = \frac{p(x)p(y|x)}{p(y)}$$

Predict the most likely x as

$$\arg \max_x p(x|y) = \arg \max_x p(x)p(y|x),$$

E.g., use brute force to search over all x . But wait:

- how much time?
- how big does our data set need to be?

6 / 31

Motivating Example Course Overview Logistics Probability Review

Brute Force Algorithm

$\underset{x}{\operatorname{argmax}} p(x)p(y|x)$

1. For all x , compute $\text{score}(x) = p(x)p(y|x)$.

2. Return x with highest score.

- How much time? $27^4 \rightarrow 27^D$
- Is there a smarter algorithm? *no*
- How many free parameters in $p(x)$? $27^D - 1$
- How big would our data set need to be to estimate it? $\rightarrow 27^D$

Lesson: for large D we need structure
 "high-dimensional" $p(a) \ p(a,b) \ p(a,b,c)$

7 / 31

Motivating Example Course Overview Logistics Probability Review

27^D is big

D	$(27)^D$
1	27
2	729
5	14,348,489
10	205,891,132,094,649
...	...

8 / 31

Motivating Example ○○○○○○○ Course Overview ○○○○○○○ Logistics ○○○○○ Probability Review ○○○○○○○

Graphical Models = Factorized Distributions

$p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3)p(x_4)$

Suppose $p(x)$ has a factorized form:

$$p(x) = f_1(x_1, x_2)f_2(x_2, x_3)\dots f_{D-1}(x_{D-1}, x_D)f_D(x_D)$$

What would this buy us?

$$p(x) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_4)$$

▶ Statistics: only $\approx (D - 1)(27)^2$ free parameters

▶ Computation: can find the MAP solution in $\approx (D - 1)(27)^2$ operations (dynamic programming) $\underset{x}{\operatorname{argmax}} p(x|y)$

Factorization is great! But when is it "valid"?

when dist satisfies certain conditional independence properties

9 / 31

Motivating Example ○○○○○○○ Course Overview ●○○○○○○ Logistics ○○○○○ Probability Review ○○○○○○○

Course Overview

10 / 31

Motivating Example ○○○○○○○ Course Overview ○○○○○○○ Logistics ○○○○○ Probability Review ○○○○○○○

Probabilistic Graphical Models

- ▶ PGMs = structured probability distributions → main AI tool for representing, constructing and reasoning about large-scale, high dimensional systems under uncertainty.
- ▶ **Many applications:**
 - ▶ In CS: speech recognition, image recognition/labeling, action recognition, modeling sensor networks, social network analysis, recommender systems, computational biology, medical decision making, information extraction, text modeling, ...
 - ▶ In science: Bayesian statistics, probabilistic programming, ecology, epidemiology, physics, economics, ...
- ▶ State of the art for many CS tasks (images, text, etc.) before 2012. Now, deep learning usually wins for predictive tasks with enough data.
- ▶ Still widely used in Bayesian statistics and in components of AI systems; ideas underlie many different ML/AI models → *diffusion flow*

11 / 31

Motivating Example ○○○○○○○ Course Overview ○○●○○○○ Logistics ○○○○○ Probability Review ○○○○○○○

Main idea

$$x_1 \rightarrow f_1 \rightarrow x_2 \rightarrow f_2 \rightarrow x_3 \rightarrow f_3 \rightarrow x_4$$

- ▶ **Represent** the structure of high-dimensional joint probability distributions using graphs (graph structure models conditional independencies)
- ▶ **Learn** the distribution from data
- ▶ Perform **inference** to efficiently answer probability queries (i.e., compute conditional distributions) using the graph structure

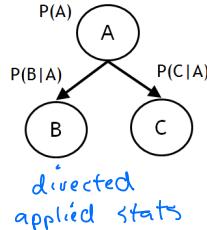
$$p(x|y)$$

12 / 31

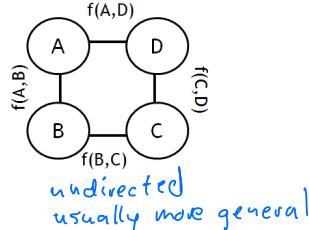
Bayesian Networks and Markov Networks

The two most common types of probabilistic graphical models are Bayesian Networks and Markov Networks.

Bayesian Networks



Markov Random Fields



13 / 31

Probabilistic Graphical Models vs Machine Learning

- ▶ Probabilistic graphical models (PGMs) are a sub-topic of machine learning
- ▶ PGM models exist for essentially all main ML tasks: classification, regression, clustering, dimensionality reduction, ...
- ▶ Many classical ML models are special cases of PGMs
- ▶ Knowledge of PGMs allows you to build customized models for dealing with complex, uncertain, and partially observed data.

14 / 31

Course Goals

The aim of this course is to develop the knowledge and skills necessary to effectively design, implement and apply probabilistic graphical models to real problems. The course will cover:

- ▶ Bayesian and Markov networks
- ▶ Exact and approximate inference methods for answering probability queries and making predictions
 - ◀ Markov chain Monte Carlo (MCMC)
 - ◀ Variational inference (VI)
- ▶ Estimation of the parameters and structure of graphical models from data
- ▶ Broader probabilistic ML
 - ◀ Gaussian processes
 - ◀ Normalizing flows
 - ◀ Diffusion?

15 / 31

Prerequisites

Formally, none. However, we will move quickly through a lot of material. Familiarity with the following material is highly recommended:

- ▶ Probability and statistics
- ▶ Calculus and linear algebra
- ▶ Basic algorithms and data structures
- ▶ Numerical optimization
- ▶ Machine Learning

16 / 31

Programming and Computing

- ▶ Need access to computing to complete regular assignments (any moderately recent laptop/desktop should do).
- ▶ Python **strongly recommended**. I recommend using an Anaconda distribution.

Logistics and course details:

- ▶ Instructor: Dan Sheldon
- ▶ TAs: Iman Deznabi, Shakir Sahibul
- ▶ Lectures: M/W 4:00-5:15pm
- ▶ Instructor Office Hours: Tuesday 1-2pm *→ TAs: Piazza*
- ▶ Course Website: <https://people.cs.umass.edu/~sheldon/teaching/cs688/index.html>
- ▶ Discussion: Piazza
- ▶ Homework Submission: Gradescope
- ▶ Course e-Mail: Piazza private message

Canvas

Logistics

Textbooks

There is no required book, but optional supplementary readings will be assigned in two books:

- ▶ MLPP: *Machine Learning: A probabilistic Perspective*. Murphy. (Primary; free eBook for UMass students)
- ▶ PGM: *Probabilistic Graphical Models* by Koller and Friedman. (Supplemental)

The readings will cover similar material.

Motivating Example

Course Overview

Logistics ●

Probability Review

Evaluation

The evaluation for the course will be based on quizzes, assignments, and a final exam.

- ▶ Homework Assignments 60%
- ▶ Final Exam 30%
- ▶ Quizzes 10%

21 / 31

Motivating Example

Course Overview

Logistics ●

Probability Review

Course Policies

This is a large class. Course policies are applied with exceptions only in exceptional situations. Read the course syllabus for details of:

- ▶ Homework submission and late days — 5 late days
- ▶ Homework collaboration
- ▶ Academic honesty
- ▶ Regrading

22 / 31

Motivating Example

Course Overview

Logistics ●

Probability Review

Echo360 Lecture Capture

- ▶ Lectures are recorded and will be available after 3–4 days
- ▶ There is form to request access sooner (see course webpage)
- ▶ Usually 1–2 recordings per semester fail

23 / 31

Motivating Example

Course Overview

Logistics

Probability Review ●

Probability Review

$p(y) p(x|y) \quad p(y|x)$

KL
 VI

$ELBO$

24 / 31

Motivating Example Course Overview Logistics Probability Review

Discrete Probability Distribution

$\Omega = \{H, T\}$ $\Omega = \{1, 2, \dots, 6\}$

- A discrete distribution models a random experiment (e.g., a coin flip, roll of the die, shot of an arrow) with a finite or countable number of outcomes
- The *sample space* Ω is the set of outcomes
- A probability distribution P on Ω assigns a non-negative real number or *atomic probability* $p(\omega)$ to each outcome $\omega \in \Omega$, such that

$$p(\omega) \geq 0, \quad \sum_{\omega \in \Omega} p(\omega) = 1$$

25 / 31

Motivating Example Course Overview Logistics Probability Review

Events

$\Omega = \{1, 2, 3, 4, 5, 6\}$

even = $\{2, 4, 6\}$ "roll a 1" = $\{1\}$

- An **event** $A \subseteq \Omega$ is a subset of the sample space
- The **probability** of an event is the sum of the probabilities of its outcomes:

$$P(A) = \sum_{\omega \in A} p(\omega) = p(2) + p(4) + p(6) = \frac{1}{2}$$

- Note: events are the *only things* that have probabilities, ever
- When Ω is not discrete, we need to be more careful about defining events and their probabilities (measure theory)

26 / 31

Motivating Example Course Overview Logistics Probability Review

Example

Imagine the random experiment of rolling a fair six-sided die:

- Sample Space: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Consider the events $A = \{1, 2\}$ and $B = \{2\}$.
- Then $P(A) = 1/3$, $P(B) = 1/6$
- Also, $P(A \cap B) = 1/6$, $P(A \cup B) = 1/3$

$\{2, 3\}$ $\{1, 2\}$

B A

27 / 31

Motivating Example Course Overview Logistics Probability Review

Random Variables

$1, 2, 3, 4, \dots$

w: outcome $X(\omega)$: measurement

Events can be cumbersome. With PGMs, we'll usually work with random variables.

A random variable X is a mapping $X : \Omega \rightarrow D$

- D is some set (e.g., the integers)
- Notation: $D = \text{Val}(X)$, the set of values of X

A random variable partitions Ω :

- For each $x \in D$, we have the event $[X = x] = \{\omega : X(\omega) = x\}$
- Its probability is

$$P(X = x) = P(\{\omega : X(\omega) = x\}) = \sum_{\omega: X(\omega)=x} p(\omega) = p_X(x)$$

Ω

28 / 31

Example: Rolling two Six-Sided Dice

Say X is the sum of the two fair dice. Then

- ▶ Sample Space: $\Omega = \{(w_1, w_2) \mid w_1, w_2 \in \{1, 2, 3, 4, 5, 6\}\}$
- ▶ Domain $= \text{Val}(X) = \{2, 3, \dots, 12\}$
- ▶ Mapping: $X(w) = X(w_1, w_2) = w_1 + w_2$
- ▶ Example Event: $\{X = 4\} = \{(1, 3), (2, 2), (3, 1)\}$

Probability Mass Function

$$p_X(x) = \frac{1}{36}, p_X(3) = \frac{2}{36}, \dots, p_X(12)$$

The *probability mass function* (PMF) of a discrete random variable X is a function p_X that gives the probability of the event $[X = x]$ for every $x \in \text{Val}(X)$:

$$p_X(x) = P(X = x)$$

Thought experiment: the PMF also satisfies the definition of a discrete probability distribution

$$p_X(x) \geq 0, \quad \sum_{x \in \text{Val}(X)} p(x) = 1$$

Why didn't we just use $\text{Val}(X)$ as the sample space?

Next Time

- ▶ A bit more probability
 - ▶ joint distributions
 - ▶ rules of probability
 - ▶ independence and conditional independence
- ▶ Bayes' nets