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COMPSCI 688: Probabilistic Graphical Models
Lecture 1: Course Overview

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)
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Motivating Example: Typo Corrector

Suppose we have a database of words with at most 𝐷 letters, such as

duck, pile, an ⋆ ⋆, dive, ⋯
where ⋆ is used to pad words with less than 𝐷 letters (in this example 𝐷 = 4).
Problem:▶ We see “noisy” words: each letter has a 25% chance of corrupted to any random

letter▶ Given a noisy word, what is original clean work?

A probabilistic approach will have 3 steps…
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Step 1: Distribution of Words

▶ Build a distribution 𝑝(𝑥) over all length D sequences in the database▶ Each sequence represented by 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝐷) with 𝑥𝑖 ∈ {a, b, ⋯ , z, ⋆}.▶ 𝑝(𝑥) is a measure of how likely 𝑥 is to occur as an English word.
Example 𝑝(a, a, a, a) = 0.000001𝑝(a, a, a, b) = 0.000002⋮𝑝(t, a, c, o) = 0.00531⋮
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Step 2: Conditional Distribution of Noisy Words

We build a conditional distribution 𝑝(𝑦|𝑥) of the “noisy” sequences 𝑦 given “clean”
ones 𝑥. In this case, the conditional distribution is

𝑝(𝑦|𝑥) = 𝐷∏𝑖=1 (0.75 × 𝕀[𝑦𝑖 = 𝑥𝑖] + 0.25 × 127) .
▶ 𝕀[⋅] is indicator▶ Each position 𝑖 corrupted independently:▶ with probability 0.75, keep 𝑥𝑖▶ with probability 0.25, select a random letter
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Step 3: Combine to Make Predictions

Given noisy sequence y, want to predict a clean sequence x. Bayes’ rule says:𝑝(𝑥|𝑦) = 𝑝(𝑥)𝑝(𝑦|𝑥)𝑝(𝑦) .
Predict the most likely 𝑥 as

arg max𝑥 𝑝(𝑥|𝑦) = arg max𝑥 𝑝(𝑥)𝑝(𝑦|𝑥),
E.g., use brute force to search over all 𝑥. But wait:▶ how much time?▶ how big does our data set need to be?
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Brute Force Algorithm

1. For all 𝑥, compute score(𝑥) = 𝑝(𝑥)𝑝(𝑦|𝑥).
2. Return 𝑥 with highest score.▶ How much time?▶ Is there a smarter algorithm?▶ How many free parameters in 𝑝(𝑥)?▶ How big would our data set need to be to estimate it?

Lesson: for large 𝐷, we need structure

7 / 31

. .. .. .. .. .. .. .. .Motivating Example
. .. .. .. .. .. .. .. .Course Overview

. .. .. .. .. .. .Logistics
. .. .. .. .. .. .. .. .Probability Review27𝐷 is big

D (27)𝐷1 272 7295 14, 348, 48910 205, 891, 132, 094, 649... ...
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Graphical Models = Factorized Distributions

Suppose 𝑝(𝑥) has a factorized form:𝑝(𝑥) = 𝑓(𝑥1, 𝑥2)𝑓(𝑥2, 𝑥3) ⋯ 𝑓(𝑥𝐷−1, 𝑥𝐷).
What would this buy us?▶ Statistics: only ≈ (𝐷 − 1)(27)2 free parameters▶ Computation: can find the MAP solution in ≈ (𝐷 − 1)(27)2 operations (dynamic

programming)
Factorization is great! But when is it “valid”?

When 𝑝(𝑥) has conditional
independencies (CIs)...
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Probabilistic Graphical Models▶ PGMs = structured probability distributions → main AI tool for representing,
constructing and reasoning about large-scale, high dimensional systems under
uncertainty.▶ Many applications:▶ In CS: speech recognition, image recognition/labeling, action recognition, modeling

sensor networks, social network analysis, recommender systems, computational
biology, medical decision making, information extraction, text modeling, …▶ In science: Bayesian statistics, probabilistic programming, ecology, epidemiology,
physics, economics, …▶ State of the art for many CS tasks (images, text, etc.) before 2012. Now, deep

learning usually wins for predictive tasks with enough data.▶ Still widely used in Bayesian statistics and in components of AI systems; ideas
underlie many different ML/AI models
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Main idea

▶ Represent the structure of high-dimensional joint probability distributions using
graphs (graph structure models conditional indpendencies)▶ Learn the distribution from data▶ Perform inference to efficiently answer probability queries (i.e., compute
conditional distributions) using the graph structure

12 / 31



. .. .. .. .. .. .. .. .Motivating Example
. .. .. .. .. .. .. .. .Course Overview

. .. .. .. .. .. .Logistics
. .. .. .. .. .. .. .. .Probability Review

Bayesian Networks and Markov Networks

The two most common types of probabilistic graphical models are Bayesian Networks
and Markov Networks.
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Probabilistic Graphical Models vs Machine Learning

▶ Probabilistic graphical models (PGMs) are a sub-topic of machine learning▶ PGM models exist for essentially all main ML tasks: classification, regression,
clustering, dimensionality reduction, …▶ Many classical ML models are special cases of PGMs▶ Knowledge of PGMs allows you to build customized models for dealing with
complex, uncertain, and partially observed data.
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Course Goals

The aim of this course is to develop the knowledge and skills necessary to effectively
design, implement and apply probabilistic graphical models to real problems. The
course will cover:▶ Bayesian and Markov networks▶ Exact and approximate inference methods for answering probability queries and

making predictions▶ Estimation of the parameters and structure of graphical models from data
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Prerequisites

Formally, none. However, we will move quickly through a lot of material. Familiarity
with the following material is highly recommended:▶ Probability and statistics▶ Calculus and linear algebra▶ Basic algorithms and data structures▶ Numerical optimization▶ Machine Learning
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Programming and Computing

▶ Need access to computing to complete regular assignments (any moderately
recent laptop/desktop should do).▶ Python strongly recommended. I recommend using an Anaconda distribution.
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Logistics and course details:

▶ Instructor: Dan Sheldon▶ TAs: Iman Deznabi, Shakir Sahibul▶ Lectures: M/W 4:00-5:15pm▶ Instructor Office Hours: Tuesday 1–2pm▶ Course Website:
https://people.cs.umass.edu/~sheldon/teaching/cs688/index.html▶ Discussion: Piazza▶ Homework Submission: Gradescope▶ Course e-Mail: Piazza private message
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Textbooks

There is no required book, but optional supplementary readings will be assigned in two
books:▶ MLPP: Machine Learning: A probabilistic Perspective. Murphy. (Primary; free

eBook for UMass students)▶ PGM: Probabilistic Graphical Models by Koller and Friedman. (Supplemental)
The readings will cover similar material.
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Evaluation

The evaluation for the course will be based on quizzes, assignments, and a final exam.▶ Homework Assignments 60%▶ Final Exam 30%▶ Quizzes 10%
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Course Policies

This is a large class. Course policies are applied with exceptions only in exceptional
situations. Read the course syllabus for details of:▶ Homework submission and late days▶ Homework collaboration▶ Academic honesty▶ Regrading
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Echo360 Lecture Capture

▶ Lectures are recorded and will be available after 3–4 days▶ There is form to request access sooner (see course webpage)▶ Usually 1–2 recordings per semester fail
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Discrete Probability Distribution

▶ A discrete distributions models a random experiment (e.g., a coin flip, roll of the
die, shot of an arrow) with a finite or countable number of outcomes▶ The sample space Ω is the set of outcomes▶ A probability distribution 𝑃 on Ω assigns a non-negative real number or atomic
probability 𝑝(𝜔) to each outcome 𝜔 ∈ Ω, such that𝑝(𝜔) ≥ 0, ∑𝜔∈Ω 𝑝(𝜔) = 1
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Events

▶ An event 𝐴 ⊆ Ω is a subset of the sample space▶ The probability of an event if the sum of the probabilities of its outcomes:𝑃(𝐴) = ∑𝜔∈𝐴 𝑝(𝜔)
▶ Note: events are the only things that have probabilities, ever▶ When Ω is not discrete, we need to be more careful about defining events and

their probabilities (measure theory)
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Example

Imagine the random experiment of rolling a fair six-sided die:▶ Sample Space: Ω = {1, 2, 3, 4, 5, 6}▶ Consider the events 𝐴 = {1, 2} and 𝐵 = {2}.▶ Then 𝑃(𝐴) = 1/3, 𝑃(𝐵) = 1/6▶ Also, 𝑃(𝐴 ∩ 𝐵) = 1/6, 𝑃(𝐴 ∪ 𝐵) = 1/3
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Random Variables

Events can be cumbersome. With PGMs, we’ll usually work with random variables.
A random variable 𝑋 is a mapping 𝑋 ∶ Ω → 𝐷▶ 𝐷 is some set (e.g., the integers)▶ Notation: 𝐷 = Val(𝑋), the set of values of 𝑋
A random variable partitions Ω:▶ For each 𝑥 ∈ 𝐷, we have the event [𝑋 = 𝑥] = {𝜔 ∶ 𝑋(𝜔) = 𝑥}▶ It’s probability is𝑃(𝑋 = 𝑥) = 𝑃({𝜔 ∶ 𝑋(𝜔) = 𝑥}) = ∑𝜔∶𝑋(𝜔)=𝑥 𝑝(𝜔)
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Example: Rolling two Six-Sided Dice

Say 𝑋 is the sum of the two fair dice. Then▶ Sample Space: Ω =

{(𝜔1, 𝜔2)|𝜔1, 𝜔2 ∈ {1, ..., 6}} = {(1, 1), (1, 2), ..., (6, 6)}

▶ Domain

𝐷 = Val(𝑋) = {2, ..., 12}

▶ Mapping: 𝑋

((𝜔1, 𝜔2)) = 𝜔1 + 𝜔2

▶ Example Event: {𝑋 = 4} =

{(1, 3), (2, 2), (3, 1)}
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Probability Mass Function

The probability mass function (PMF) of a discrete random variable 𝑋 is a function 𝑝𝑋
that gives the probability of the event [𝑋 = 𝑥] for every 𝑥 ∈ Val(𝑋):𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥)
Thought experiment: the PMF also satisfies the defintion of a discrete probability
distribution 𝑝𝑋(𝑥) ≥ 0, ∑𝑥∈Val(𝑋) 𝑝(𝑥) = 1
Why didn’t we just use Val(𝑋) as the sample space?
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Next Time

▶ A bit more probability▶ joint distributions▶ rules of probability▶ independence and conditional independence▶ Bayes’ nets
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