Nearest Neighbor Classification

Seed classification by area and compactness

▶ What should we predict for unlabeled test points (stars)?
▶ Nearest neighbor classification: predict label of nearest training example
▶ \(k \)-nearest neighbor: predict consensus of \(k \) nearest training examples

\(k \)-Nearest Neighbor Classification

▶ Training: store the training data (trivial!)
\[D = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})\} \]

▶ Prediction: for a new instance \(x \), predict label that is most frequent among \(k \) training examples closest to \(x \)

▶ KNN can work with any distance function and any value of \(k \). We need to choose these.

Distance and Similarity

▶ KNN can use any distance function to determine \(k \) nearest neighbors. A distance function \(d(x, x') \) takes two data points and returns a distance. It should satisfy
 - \(d(x, x') \geq 0 \) (non-negativity)
 - \(d(x, x') = 0 \) (distance from a point to itself is zero)

▶ Or you can use a similarity function
 - \(s(x, x') \geq 0 \)
 - \(s(x, x) \geq s(x, x') \) for all other \(x' \) (\(x \) is more similar to itself than any other point)

Euclidean Distance

▶ We’ve already seen one distance function, the Euclidean distance:
\[d(x, x') = \|x - x'\| \]
 - Length of straight line between \(x \) and \(x' \) (= vector norm of \(x - x' \))

Minkowski Distance

▶ A more general class of distance functions come from Minkowski Distance
\[d_p(x, x') := \|x - x'\|_p \]
\[\|r\|_p := \left(\sum_{i=1}^{n} |r_i|^p \right)^{1/p} \]
 - \(p = 2 \) is Euclidean distance (verify on own)
 - \(p = 1 \) is called the “Manhattan distance”

Examples

▶ Jupyter Demo 1: different distance functions

KNN Implementation

▶ The “brute force” version of KNN is very straightforward:
 - Given test point \(x \), compute distances \(d^{(i)} := d(x, x^{(i)}) \) to each training example
 - Sort training examples by distance
 - \(k \)-nearest neighbors — find \(k \) examples in this sorted list.
 - Now, making the prediction is straightforward.
 - Running time: \(O(m \log m) \) for one prediction

▶ In practice, clever data structures (e.g., KD-trees) can be constructed to find \(k \) nearest neighbors and make predictions more quickly.
KNN Trade-Offs

- **Strengths**
 - Simple
 - Converges to the correct decision surface as data goes to infinity

- **Weaknesses**
 - Lots of variability in the decision surface when amount of data is low
 - Curse of dimensionality: everything is far from everything else in high dimensions
 - Running time and memory usage: store all training data and perform neighbor search for every prediction → use a lot of memory / time

- Jupyter Demo 2: KNN in action
 - Effect of \(k \)
 - KNN convergence as data goes to infinity

Decision Trees

- Classical model for making a decision or classification using “splitting rules” organized into tree data structure
- Data instance \(x \) is routed from the root to leaf
 - Nodes = “splitting rules”
 - Continuous variables: test if \((x_j < c)\) or \((x_j \geq c)\) (2 branches)
 - Discrete variables: test \((x_j = 1), (x_j = 2), \ldots\) for \(k \) possible values of \(x_j \) (\(k \) branches)
 - \(x \) goes down branch corresponding to result of test
 - Leaf nodes are assigned labels → prediction for \(x \)

Decision Tree Intuition

- Board work
 - Geometric illustration of decision tree: recursive axis-aligned partitioning
 - Intuition for how to partition to fit a dataset (= learning a decision tree)

Decision Tree Learning

- How do we fit a decision tree to training data? We won’t give details here, just some intuition...
 - Idea: recursive splitting of training set

- Start with all training examples at root of tree
- Find “best” splitting rule at root
- Recurse on each branch

Decision Tree Trade-Offs

- **Strengths**
 - Interpretability: the learned model is easy to understand
 - Running time for predictions: shallow trees can be extremely fast classifiers

- **Weaknesses**
 - Running time for learning: finding the optimal trees is computationally intractable (NP-complete), so we need to design greedy heuristics.
 - Representation: we may need very large trees to accurately model geometry of our problem with axis-aligned splits

- General advice: decision trees are very competitive “out-of-the-box” machine learning models for lots of problems!