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1 CODE LISTING: hw4.py
In [1]: import numpy as np

import matplotlib.pyplot as plt

from sklearn import linear_model

def train_one_vs_all(X, y, num_classes, lambda_val):

'''
Train a one vs. all logistic regression

Inputs:
X data matrix (2d array shape m x n)
y label vector with entries from 0 to

num_classes - 1 (1d array length m)
num_classes number of classes (integer)
lambda_val regularization parameter (scalar)

Outputs:
weight_vectors matrix of weight vectors for each class

weight vector for class c in the cth column
(2d array shape n x num_classes)

intercepts vector of intercepts for all classes
(1d array length num_classes)

'''

# Write code here

# Hint: you may find the vector comparison y == i helpful!

return weight_vectors, intercepts

def predict_one_vs_all(X, weight_vectors, intercepts):

'''
Train a one vs. all logistic regression

Inputs:
X data matrix (2d array shape m x n)
weight_vectors matrix of weight vectors for each class

weight vector for class c in the cth column
(2d array shape n x num_classes)

intercepts vector of intercepts for all classes
(1d array length num_classes)

Outputs:
predictions vector of predictions for examples in X

(1d array length m)
'''

# Write code here
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# Hint: use a matrix vector multiplication to simultaneously make
# predictions for all classes. Don't forget to add the intercept values

# Hint: look up the np.argmax function. It can find the index of
# the largest value in an array, or in each row/column of an array

return predictions

def train_logistic_regression(X, y, lambda_val):

'''
Train a regularized logistic regression model

Inputs:
X data matrix (2d array shape m x n)
y label vector with 0/1 entries (1d array length m)
lambda_val regularization parameter (scalar)

Outputs:
weights weight vector (1d array length n)
intercept intercept parameter (scalar)

'''
model = linear_model.LogisticRegression(C=2./lambda_val, solver='lbfgs')

# call model.fit(X, y) while suppressing warnings about convergence
with warnings.catch_warnings():

warnings.simplefilter("ignore")

model.fit(X, y)

weight_vector = model.coef_.ravel()

intercept = model.intercept_

return weight_vector, intercept

def display_data(X, im_width=None, return_mosaic=False):

'''
Display data rows as mosaic image
'''

m, n = X.shape

if im_width is None:

im_width = np.sqrt(n).astype('int')

im_height = n / im_width

if not im_width * im_height == n:

raise ValueError('cannot determine image dimensions')

X = X / (2*np.max(np.abs(X), axis=1, keepdims=True)) + 0.5

# Compute rows, cols
display_rows = np.floor(np.sqrt(m))

display_cols = np.ceil( m / display_rows )

display_rows = display_rows.astype('int')

display_cols = display_cols.astype('int')

fig = plt.figure(1, (6., 6.))

# convert each row to image
images = [X[i,:].reshape([im_height, im_width]) for i in range(m)]

# pad images for nice display
pad = 1

images = [np.lib.pad(images[i], (pad,0), 'constant') for i in range(m)]

# Assemble the image into a mosaic
rows = []
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for i in range(display_rows):

row_start = i * display_cols

row_end = (i+1) * display_cols

im = np.concatenate( images[row_start:row_end], axis=1 )

# Build the row first as an array of the correct size
row = np.zeros( (im_height + pad, (im_width + pad)*display_cols))

h,w = im.shape

# Now populate it with the image
row[:h, :w] = im

rows.append(row)

# Concatenate rows to get the final result
mosaic = np.concatenate(rows, axis=0)

plt.imshow(mosaic, cmap='gray', clim=[0,1])

plt.axis('off')

plt.show()

if return_mosaic:

return mosaic

else:

return
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1 NOTEBOOK LISTING: digit-classification.ipynb

2 Hand-Written Digit Classification

In this assignment you will implement multi-class classification for hand-written digits and run a
few experiments. The file digits-py.mat is a data file containing the data set, which is split into a
training set with 4000 examples, and a test set with 1000 examples.

You can import the data as a Python dictionary like this:

data = scipy.io.loadmat('digits-py.mat')

The code in the cell below first does some setup and then imports the data into the following
variables for training and test data:

• X_train - 2d array shape 4000 x 400
• y_train - 1d array shape 4000
• X_test - 2d array shape 1000 x 400
• y_test - 1d array shape 1000

In [ ]: %matplotlib inline

%reload_ext autoreload

%autoreload 2

import numpy as np

import matplotlib.pyplot as plt

# Load train and test data
import scipy.io

data = scipy.io.loadmat('digits-py.mat')

X_train = data['X_train']

y_train = data['y_train'].ravel()

X_test = data['X_test']

y_test = data['y_test'].ravel()

2.1 (2 points) Write code to visualize the data

Once you have loaded the data, it is helpful to understand how it represents images. Each row
of X_train and X_test represents a 20 x 20 image as a vector of length 400 containing the pixel
intensity values. To see the original image, you can reshape one row of the train or test data into a
20 x 20 matrix and then visualize it using the matlplotlib imshow command.

Write code using np.reshape and plt.imshow to display the 100th training example as an
image. (Hint: use cmap='gray' in plt.imshow to view as a grayscale image.)

In [ ]: # Write code here

2.2 (2 points) Explore the data

I wrote a utility function display_data for you to further visualize the data by showing a mosaic
of many digits at the same time. For example, you can display the first 25 training examples like
this:

display_data( X_train[:,25, :] )
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Go ahead and do this to visualize the first 25 training examples. Then print the corresponding
labels to see if they match.

In [ ]: from hw4 import display_data

# Write code here

2.3 Alert: notation change!

Please read this carefully to understand the notation used in the assignment. We will use logistic
regression to solve multi-class classification. For three reasons (ease of displaying parameters as
images, compatibility with scikit learn, previewing notation for SVMs and neural networks), we
will change the notation as described here.

2.3.1 Old notation

Previously we defined our model as

hθ(x) = logistic(θ0 + θ1x1 + . . . + θnxn) = logistic(θTx)

where

• x =
[
1, x1, . . . , xn

]
was a feature vector with a 1 added in the first position

• θ =
[
θ0, θ1, . . . , θn

]
was a parameter vector with the intercept parameter θ0 in the first posi-

tion

2.3.2 New notation

We will now define our model as

hw(x) = logistic(b + w1x1 + . . . + wnxn) = logistic(wTx + b)

where

• x ∈ Rn is the original feature vector with no 1 added
• w ∈ Rn is a weight vector (equivalent to θ1, . . . , θn in the old notation)
• b is a scalar intercept parameter (equivalent to θ0 in our old notation)

2.4 (10 points) One-vs-All Logistic Regression

Now you will implement one vs. all multi-class classification using logistic regression. Recall the
method presented in class. Suppose we are solving a K class problem given training examples in
the data matrix X ∈ Rm×n and label vector y ∈ Rm (the entries of y can be from 1 to K).

For each class c = 1, . . . , K, fit a logistic regression model to distinguish class c from the others
using the labels

y(i)c =

{
1 if y(i) = c
0 otherwise.

This training procedure will result in a weight vector wc and an intercept parameter bc that
can be used to predict the probability that a new example x belongs to class c:
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logistic(wT
c x + bc) = probability that x belongs to class c.

The overall training procedure will yield one weight vector for each class. To make the final
prediction for a new example, select the class with highest predicted probability:

predicted class = the value of c that maximizes logistic(wT
c x + bc).

2.4.1 Training

Open the file hw4.py and complete the function train_one_vs_all to train binary classifiers us-
ing the procedure outlined above. I have included a function for training a regularized logistic
regression model, which you can call like this:

weight_vector, intercept = fit_logistic_regression(X, y, lambda_val)

Follow the instructions in the file for more details. Once you are done, test your implementa-
tion by running the code below to train the model and display the weight vectors as images. You
should see images that are recognizable as the digits 0 through 9 (some are only vague impressions
of the digit).

In [ ]: from hw4 import train_one_vs_all

lambda_val = 100

weight_vectors, intercepts = train_one_vs_all(X_train, y_train, 10, lambda_val)

display_data(weight_vectors.T) # display weight vectors as images

2.4.2 Predictions

Now complete the function predict_one_vs_all in hw4.py and run the code below to make pre-
dictions on the train and test sets. You should see accuracy around 88% on the test set.

In [ ]: from hw4 import predict_one_vs_all

pred_train = predict_one_vs_all(X_train, weight_vectors, intercepts)

pred_test = predict_one_vs_all(X_test, weight_vectors, intercepts)

print("Training Set Accuracy: %f" % (np.mean(pred_train == y_train) * 100))

print(" Test Set Accuracy: %f" % (np.mean( pred_test == y_test) * 100))

2.5 (5 points) Regularization Experiment

Now you will experiment with different values of the regularization parameter λ to control over-
fitting. Write code to measure the training and test accuracy for values of λ that are powers of 10
ranging from 10−3 to 105.

• Display the weight vectors for each value of λ as an image using the display_data function
• Save the training and test accuracy for each value of λ
• Plot training and test accuracy versus lambda (in one plot).

In [ ]: lambda_vals = 10**np.arange(-3., 5.)

num_classes = 10

# Write code here
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# In your final plot, use these commands to provide a legend and set
# the horizontal axis to have a logarithmic scale so the value of lambda
# appear evenly spaced.

plt.legend(('train', 'test'))

plt.xscale('log')

2.6 (5 points) Regularization Questions

1. Does the plot show any evidence of overfitting? If so, for what range of values (roughly) is
the model overfit? What do the images of the weight vectors look when the model is overfit?

2. Does the plot show any evidence of underfitting? For what range of values (roughly) is
the model underfit? What do the images of the weight vectors look like when the model is
underfit?

3. If you had to choose one value of , what would you select?

4. Would it make sense to run any additional experiments to look for a better value of . If so,
what values would you try?

** Your answers here **

2.7 (6 points) Learning Curve

A learning curve shows accuracy on the vertical axis vs. the amount of training data used to learn
the model on the horizontal axis. To produce a learning curve, train a sequence of models using
subsets of the available training data, starting with only a small fraction of the data and increasing
the amount until all of the training data is used.

Write code below to train models on training sets of increasing size and then plot both training
and test accuracy vs. the amount of training data used. (This time, you do not need to display the
weight vectors as images and you will not set the horizontal axis to have log-scale.)
In [ ]: m, n = X_train.shape

train_sizes = np.arange(250, 4000, 250)

nvals = len(train_sizes)

# Example: select a subset of 100 training examples
p = np.random.permutation(m)

selected_examples = p[0:100]

X_train_small = X_train[selected_examples,:]

y_train_small = y_train[selected_examples]

# Write your code here

3 (4 points) Learning Curve Questions

1. Does the learning curve show evidence that additional training data might improve perfor-
mance on the test set? Why or why not?

2. Is the any relationship between the amount of training data used and the propensity of the
model to overfit? Explain what you can conclude from the plot.

** Your answers here **
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