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Polynomial-Time Reduction

» Y <pX

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

» Statement about relative hardness. Suppose Y <p X, then:

1. If X is solvable in poly-time, so is Y
2. If Y is not solvable in poly-time, neither is X

» 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial
time, through transitivity of reductions:

Indept-Set

> meansngX.

Reduction Strategies

> Reduction by equivalence (Vertex Cover and Indpendent Set)
» Reduction to a more general case
» Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

» Can we determine if a Boolean formula has a satisfying
assignment?
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» Terminology

Variables Tiy...,Tn

Term xi or T; variable or its negation
Clause C=21VI2Vaxy “or" of terms

Formula Ci ANCaANC3 A Cy “and” of clauses
Assignment (z1,22,23) = (1,1,1)  assign 0/1 to each variable

Satisfying assigment (21, 22,23) = (0,0,0)  all clauses are “true”

Reduction by Gadgets: Satisfiability

SAT - Given boolean formula ® = C; A Cs ... A Cy, over variables
Z1,...,Zn, does there exist a satisfying assignment?

3-SAT - Same, but each C; has exactly three terms
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Claim: 3-SAT <p INDEPENDENTSET.

Reduction:

» Given 3-SAT instance ®, we will construct an independent set
instance (G, m) such that G has an independent set of size m
iff @ is satisfiable

> Return YES if solveIS((G,m)) = YES




Reduction

» ldea: construct graph G where independent set will select one
term per clause to be true
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> One node per term

» Edges between all terms in same clause (select at most one)

» Edges between a literal and all of its negations (consistent
truth assignment)

Correctness 1
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Claim: if G has an independent set of size m, then ® is satisfiable

» Suppose S is an independent set of size m

> Assign variables so selected literals are true. Edges from terms
to negations ensure non-conflicting assignment.

» Set any remaining variables arbitrarily

» At most one term per clause is selected. Since m are selected,
every clause is satisfied.

Correctness 2
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Claim: if ® is satisfiable, then G has an independent set of size m

» Consider a satsifying assignment of ®

> Let S consist of one node per triangle corresponding to true
literal in that clause. Then |S| = m.

» For (u,v) within triangle, at most one endpoint is selected

> For edge (z;,Z;) between clauses, at most one endpoint is
selected, because z; = 1 or &; = 1, but not both

» Therefore S is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial
time, through transitivity of reductions:

Indept-Set

> meansngX.

Toward a Definition of NP

Remember our mystery problems:

What is special about these?

P and NP

» P: Decision problems for which there is a polynomial time
algorithm.

» NP: Decision problems for which there is a polynomial time
certifier.

Intuition: A correct solution can be certified in polynomial time.




Solver vs. Certifier
Let X be a decision problem and s be problem instance (e.g.,
s = (G, k) for INDEPENDENT SET)

Poly-time solver. Algorithm A(s) such that A(s) = YEs iff correct
answer is YES, and running time polynomial time in |s|

yes/no yes/no
s s t
Instance Instance Hint

Poly-time certifier. Algorithm C(s,t) such that for every instance s,
there is some ¢ such that C(s,t) = YESs ¢ iff correct answer is YES,
and running time is polynomial in |s|.

> ¢ is the “certificate” or hint. Size of ¢ must also be polynomial
in |s|

Certifier Example: Independent Set

Input s = (G, k).
Problem: Does G have an independent set of size at least k7
Hint ¢: a candidate independent set U of size k

CertifyIS( (G,k),U)
> Check if size at most k&
if |U| < k return No

> Check if independent set

for each edge e = (u,v) € E do
if wu e U and v € U return NoO

end for

Return YES

Polynomial time?

Example: Independent Set

» INDEPENDENT SET € P?
» Unknown. No known polynomial time algorithm.
» INDEPENDENT SET € NP?

» Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula ® on n variables.
Problem: Is & satisfiable?
Hint ¢: the satisfying assignment

Certify3SAT( (®),t)
> Check if ¢ makes ® true

Takeaway

» 3SAT and INDEPENDENT SET are in NP, as are many other
problems that are hard to solve, but easy to certify!

P, NP, EXP

» Claim: P C NP
» Claim: NP C EXP
» Both straightforward to prove, but not critical right now.




NP-Complete

NP-
complete

» NP-complete = a problem Y € NP with the property that
X <pY for every problem X € NP!

NP-Complete
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» Cook-Levin Theorem: In 1971, Cook and Levin
independently showed that particular problems were
NP-Complete.

» We'll look at CIRCUIT-SAT as canonical NP-Complete
problem.

CIRCUIT-SAT

Problem: Given a circuit built of AND, OR, and NOT gates with
some hard-coded inputs, is there a way to set remaining inputs so
the output is 17

Output:

Inputs:

Satisfiable? Yes. Set inputs: 1, 1, 0.

CIrcUIT-SAT
Cook-Levin Theorem CIRCUIT-SAT is NP-Complete.

Proof Idea: encode certifier as a circuit. If X € NP, then X has a
poly-time certifier C'(s, t)

yes/no . ,1
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s t wpuss: ()
Instance Hint ! o

» Construct a circuit where s is hard-coded, and circuit is
satsifiable iff 3 ¢ that causes C(s,t) to output YES

s is YES instance < 3 ¢ such that C(s,t) outputs YES
s is YES instance < circuit is satisfiable

Algorithm for CIRCUIT-SAT implies an algorithm for X
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Example

See Independent Set example in other slides.

Proving New Problems NP-Complete

Fact: If Y is NP-complete and Y <p X, then X is NP-complete.

Want to prove problem X is NP-complete

» Check X € NP.
» Choose known NP-complete problem Y.
» Prove Y <p X.

Theorem: 3-SAT is NP-Complete.

> In NP? Yes, check satisfying assignment in poly-time.
> Can show that CIRCUIT-SAT <p 3-SAT




NP-Complete Problems

Circuit-SAT
Constraint satisfaction

Packing
Indept-Set Ham-Cycle N Graph-Coloring
Ham-Path Subset-Sum
Partitioning
Traveling-Salesperson | | -1 Knapsack

Sequencing Numerical

Set-Cover

Covering




