
CS 312: Algorithms
Reductions and NP-Completeness

Dan Sheldon

Mount Holyoke College

Last Compiled: December 3, 2018

Polynomial-Time Reduction

I Y ≤P X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

I Statement about relative hardness. Suppose Y ≤P X, then:
1. If X is solvable in poly-time, so is Y
2. If Y is not solvable in poly-time, neither is X

I 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial
time, through transitivity of reductions:

3-SAT

Indept-Set SAT

Vertex-Cover

Set-Cover

I Y X means Y ≤P X.

Reduction Strategies

I Reduction by equivalence (Vertex Cover and Indpendent Set)
I Reduction to a more general case
I Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

I Can we determine if a Boolean formula has a satisfying
assignment?

(x1 ∨ x̄2)︸ ︷︷ ︸
"clause"

∧(x̄1 ∨ x̄3) ∧ (x2 ∨ x̄3)

I Terminology

Variables x1, . . . , xn

Term xi or x̄i variable or its negation
Clause C = x1 ∨ x̄2 ∨ x4 “or” of terms
Formula C1 ∧ C2 ∧ C3 ∧ C4 “and” of clauses
Assignment (x1, x2, x3) = (1, 1, 1) assign 0/1 to each variable
Satisfying assigment (x1, x2, x3) = (0, 0, 0) all clauses are “true”

Reduction by Gadgets: Satisfiability
SAT – Given boolean formula Φ = C1 ∧ C2 . . . ∧ Cm over variables
x1, . . . , xn, does there exist a satisfying assignment?

3-SAT – Same, but each Ci has exactly three terms

Φ = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

Claim: 3-SAT ≤P IndependentSet.

Reduction:

I Given 3-SAT instance Φ, we will construct an independent set
instance 〈G, m〉 such that G has an independent set of size m
iff Φ is satisfiable

I Return Yes if solveIS(〈G, m〉) = Yes

Reduction

I Idea: construct graph G where independent set will select one
term per clause to be true

(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

I One node per term
I Edges between all terms in same clause (select at most one)
I Edges between a literal and all of its negations (consistent

truth assignment)

Correctness 1

Φ = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

Claim: if G has an independent set of size m, then Φ is satisfiable

I Suppose S is an independent set of size m
I Assign variables so selected literals are true. Edges from terms

to negations ensure non-conflicting assignment.
I Set any remaining variables arbitrarily
I At most one term per clause is selected. Since m are selected,

every clause is satisfied.

Correctness 2

Φ = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

Claim: if Φ is satisfiable, then G has an independent set of size m

I Consider a satsifying assignment of Φ
I Let S consist of one node per triangle corresponding to true

literal in that clause. Then |S| = m.
I For (u, v) within triangle, at most one endpoint is selected
I For edge (xi, x̄i) between clauses, at most one endpoint is

selected, because xi = 1 or x̄i = 1, but not both
I Therefore S is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial
time, through transitivity of reductions:

3-SAT

Indept-Set SAT

Vertex-Cover

Set-Cover

I Y X means Y ≤P X.

Toward a Definition of NP

Remember our mystery problems:

P

NP

EXP

What is special about these?

P and NP

I P: Decision problems for which there is a polynomial time
algorithm.

I NP: Decision problems for which there is a polynomial time
certifier.

Intuition: A correct solution can be certified in polynomial time.

Solver vs. Certifier
Let X be a decision problem and s be problem instance (e.g.,
s = 〈G, k〉 for Independent Set)

Poly-time solver. Algorithm A(s) such that A(s) = Yes iff correct
answer is Yes, and running time polynomial time in |s|

A

s

yes/no

Instance

C

s t

yes/no

Instance Hint

Poly-time certifier. Algorithm C(s, t) such that for every instance s,
there is some t such that C(s, t) = Yes t iff correct answer is Yes,
and running time is polynomial in |s|.

I t is the “certificate” or hint. Size of t must also be polynomial
in |s|

Certifier Example: Independent Set

Input s = 〈G, k〉.
Problem: Does G have an independent set of size at least k?
Hint t: a candidate independent set U of size k

CertifyIS(〈G, k〉, U)
. Check if size at most k
if |U | < k return No

. Check if independent set
for each edge e = (u, v) ∈ E do

if u ∈ U and v ∈ U return No
end for
Return Yes

Polynomial time?

Example: Independent Set

I Independent Set ∈ P?
I Unknown. No known polynomial time algorithm.

I Independent Set ∈ NP?
I Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula Φ on n variables.
Problem: Is Φ satisfiable?
Hint t: the satisfying assignment

Certify3SAT(〈Φ〉, t)
. Check if t makes Φ true

Takeaway

P

NP

EXP

I 3SAT and Independent Set are in NP, as are many other
problems that are hard to solve, but easy to certify!

P, NP, EXP

P

NP

EXP

I Claim: P ⊆ NP
I Claim: NP ⊆ EXP
I Both straightforward to prove, but not critical right now.

NP-Complete

P

NP

NP-
complete

I NP-complete = a problem Y ∈ NP with the property that
X ≤P Y for every problem X ∈ NP!

NP-Complete

CIRCUIT-SAT

SAT3-SAT VC SC IS....

I Cook-Levin Theorem: In 1971, Cook and Levin
independently showed that particular problems were
NP-Complete.

I We’ll look at Circuit-SAT as canonical NP-Complete
problem.

Circuit-SAT

Problem: Given a circuit built of And, Or, and Not gates with
some hard-coded inputs, is there a way to set remaining inputs so
the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

Circuit-SAT
Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode certifier as a circuit. If X ∈ NP, then X has a
poly-time certifier C(s, t)

C

s t

yes/no

Instance Hint

I Construct a circuit where s is hard-coded, and circuit is
satsifiable iff ∃ t that causes C(s, t) to output Yes

I s is Yes instance ⇔ ∃ t such that C(s, t) outputs Yes
I s is Yes instance ⇔ circuit is satisfiable
I Algorithm for Circuit-Sat implies an algorithm for X

Example

See Independent Set example in other slides.

Proving New Problems NP-Complete

Fact: If Y is NP-complete and Y ≤P X, then X is NP-complete.

Want to prove problem X is NP-complete

I Check X ∈ NP.
I Choose known NP-complete problem Y .
I Prove Y ≤P X.

Theorem: 3-SAT is NP-Complete.

I In NP? Yes, check satisfying assignment in poly-time.
I Can show that Circuit-SAT ≤P 3-SAT

NP-Complete Problems

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle
Ham-Path

Traveling-Salesperson

Subset-Sum

0-1 Knapsack

Graph-Coloring

Constraint satisfaction

Partitioning

NumericalSequencing

Packing

Covering

