
CS 312: Algorithms
Subset Sum

Dan Sheldon

Mount Holyoke College

Last Compiled: November 7, 2018

Dynamic Programming Recipe

I Step 1: Devise simple recursive algorithm
I Make one decision by trying all possibilities
I Use a recursive solver to evaluate the value of each
I Problem: it does redundant work, often exponential time

I Step 2: Write recurrence for optimal value

I Step 3: Design iterative algorithm

I Subset Sum: need to “add a variable”

Problem Formulation

I Example on board

I Input
I Items 1, 2, . . . , n
I Weights wi for all items (integers)
I Capacity W

I Goal: select a subset S whose total weight is as large as possible
without exceeding W .

I Subset Sum: need to “add a variable” to recurrence

Subset Sum

Step 1: Recursive Algorithm, First Try

I Let O be an optimal solution
I If n /∈ O, then recurse on first n− 1 items
I If n ∈ O, then . . .

I SubsetSum(j)
if j = 0 then return 0
. Case 1: j /∈ O
val1 = ???
. Case 2: j ∈ O
if wj ≤W then

val2 = ???
else

val2 = 0
end if
return max(val1, val2)

I Exercise: what goes wrong?
Cannot express val2 recursively:
the remaining capacity no
longer W .

I Exercise: fix it

Step 1: Recursive Algorithm, Add a Variable

I Find value of optimal solution O on items {1, 2, . . . , j} when the
remaining capacity is w

I SubsetSum(j,w)
if j = 0 then return 0
. Case 1: j /∈ O
val1 = SubsetSum(j − 1, w)
. Case 2: j ∈ O
if wj ≤ w then

val2 = wj + SubsetSum(j − 1, w − wj)
else

val2 = 0
end if
return max(val1, val2)



Recurrence

I Let OPT(j, w) be the maximum weight of any subset of items
{1, . . . , j} that does not exceed w

base case: OPT(0, w) = 0 for all w

if wj ≤ w then: OPT(j, w) = max
{

OPT(j − 1, w),
wj+ OPT(j − 1, w − wj)

}

else: OPT(j, w) = OPT(j − 1, w)

I Questions
I Do we need a base case for OPT(j, 0)? No.
I What is overall optimum to original problem? OPT(n, W )

Step 3: Iterative Algorithm

I SubsetSum(n,W )
Initialize array M [0..n, 0..W ] to hold optimal values of
subproblems
Set M [0, w] = 0 for w = 0, . . . , W
for j = 1 to n do

for w = 0 to W do
Use recurrence from previous slide to compute M [j, w]

end for
end for
return M [n, W ]

I Example on board.

I Running Time? Θ(nW ). Note: this is “pseudopolynomial”. Not
strictly polynomial, because it can be exponential in the number
of bits used to represent the values.

A Related Problem: Knapsack

I n items
I weights wi

I values vi

Find the subset of items with total weight at most W

Exercise: Find the
cheapest way to buy
exactly n chicken wings


