CS 312: Algorithms

Subset Sum

Dan Sheldon

Mount Holyoke College

Last Compiled: November 7, 2018

Dynamic Programming Recipe

» Step 1: Devise simple recursive algorithm

> Make one decision by trying all possibilities
» Use a recursive solver to evaluate the value of each
» Problem: it does redundant work, often exponential time

» Step 2: Write recurrence for optimal value

> Step 3: Design iterative algorithm

» Subset Sum: need to “add a variable”

Problem Formulation

» Example on board

> Input
> ltems 1,2,...,n
» Weights w; for all items (integers)
» Capacity W

> Goal: select a subset S whose total weight is as large as possible
without exceeding W.

» Subset Sum: need to “add a variable” to recurrence

Subset Sum

My HOBBY:
EMBEDDING NP-QOMPLETE PROBLEMS IN RESTAURANT (RDERS

CHOTCHKIES RESTAURAWT

WED LIKE EXACTLY §15. 05

WORTH OF RPPETIZERS, PLEASE.
— APPENZERS | LEXACTLY? UMK ..
MIXED FROIT 2.15 HERE, THESE FAPERS ON THE KNAPSACK.
PRCBLEM MIGHT HELP YOU OUT
FRENCH FRIES 275 LISTEN, T HAVE 51X OTHER
SIE SALAD S5 TRBLES 10 GET T0—
A FR&T AS PUSSIBLE, OF COURSE. LANT
HOT WINGS 2.5 SOMETHING ON TRAVELING SAESIAN? /
MOZZAREUA STICKS H-20

SAMPLER PLATE 5.80

—— SANDWICHES ~—
PLE £ 8r

\
(Y08

Step 1: Recursive Algorithm, First Try

» Let O be an optimal solution

> If n ¢ O, then recurse on first n — 1 items
» If n e O, then ...

> SubsetSum(j)
if j = 0 then return 0

>Case l: j ¢ O
vall = 777 » Exercise: what goes wrong?
>Case 2: j €O Cannot express val2 recursively:
if w; < W then the remaining capacity no

val2 = 777 longer W.
else » Exercise: fix it

val2 =0
end if

return max(vall, val2)

Step 1: Recursive Algorithm, Add a Variable

» Find value of optimal solution O on items {1,2,...,j} when the
remaining capacity is w

> SubsetSum(j,w)
if j = 0 then return 0
>Case l: j¢ O
vall = SubsetSum(j — 1, w)
>Case2: j €O
if w; < w then
val2 = w; + SubsetSum(j — 1, w — w)
else
val2 =0
end if
return max(vall, val2)

Recurrence

> Let OPT(j, w) be the maximum weight of any subset of items
{1,...,7} that does not exceed w

base case: OPT(0,w) =0 for all w

. . OPT(] - 1,11)),
if w; < w then: OPT(j,w) = max

wj+ OPT(j — 1, w — wj)
else: OPT(j,w) = OPT(j — 1,w)

» Questions

> Do we need a base case for OPT(5,0)? No.
» What is overall optimum to original problem? OPT(n, W)

Step 3: lterative Algorithm

> SubsetSum(n, W)
Initialize array M|[0..n,0..W] to hold optimal values of
subproblems
Set M[0,w] =0 forw=0,..., W
for j =1tondo
for w=0to W do
Use recurrence from previous slide to compute M [j, w]
end for
end for
return M[n, W]

» Example on board.

> Running Time? O(nWW). Note: this is “pseudopolynomial”. Not
strictly polynomial, because it can be exponential in the number
of bits used to represent the values.

A Related Problem: Knapsack

> n items
> weights w;
» values v;

Find the subset of items with total weight at most W

| | 24 Chicken Wings ~ 27.25
25 Chicken Wings ~ 27.80
26 Chicken Wings

il

Exercise: Find the
‘cheapest way to buy
" exactly n chicken wings

