
CS 312: Algorithms
Intro to Dynamic Programming

Dan Sheldon

Mount Holyoke College

Last Compiled: October 31, 2018

Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Learning Goals

Greedy Divide and
Conquer

Dynamic
Programming

Formulate problem
Design algorithm X X
Prove correctness X
Analyze running time X
Specific algorithms X X

Weighted Interval Scheduling

I Television scheduling problem: Given n shows with start time si

and finish time fi, watch as many shows as possible, with no
overlap.

I A Twist: Each show has a value vi and want a set of shows S,
with no overlap and maximum value ∑

i∈S vi.

I Greedy? Example on board.

I Problem formulation
I Show (job) j has value vj , start time sj , finish time fj

I Assume shows sorted by finishing time f1 ≤ f2 ≤ . . . ≤ fn

I Shows i and j are compatible if they don’t overlap
I Goal: selected subset of non-overlapping jobs with maximum

value

Dynamic Programming Recipe

I Step 1: Devise simple recursive algorithm
I Make one decision by trying all possibilities
I Use a recursive solver to evaluate the value of each
I Problem: it does redundant work, often exponential time

I Step 2: Write recurrence for optimal value

I Step 3: Design iterative algorithm

Step 1: Recursive Algorithm
I Observation: Let O be the optimal solution. Either n ∈ O or

n /∈ O. In either case, we can reduce the problem to a smaller
instance of the same problem.

I Recursive algorithm to find value of optimal subset of first j
shows

Compute-Value(j)
Base case: if j = 0 return 0
Case 1: j ∈ O
Let pj be highest-numbered show compatible with j
val1 = vj + Compute-Value(pj)
Case 2: j /∈ O
val2 = Compute-Value(j − 1)
return max(val1, val2)



Running Time?

I Board work

I Problem: running time is exponential in n (recursion tree). But
redundant work is done. Only n unique subproblems.

Step 2: Recurrence

I Recurrence = shorter, mathematical, description of recursive
structure for optimal value

I Let OPT(j) be the value of optimal subset of first j jobs
I Let pj be highest-numbered job that is compatible with j

OPT(0) = 0
OPT(j) = max{vj + OPT(pj)︸ ︷︷ ︸

Case 1

, OPT(j − 1)︸ ︷︷ ︸
Case 2

}

Step 3: Iterative “Bottom-Up” Algorithm

WeigthedIS
Initialize array M [0 . . . n] to hold optimal values
M [0] = 0 . Value of empty set
for j = 1 to n do

M [j] = max(vj + M [pj ], M [j − 1])
end for

I Example execution
I Running time? O(n)
I Usually direct “wrapping” of recurrence in appropriate for loop.

Pay attention to dependence on previously-computed entries of
M to know which direction to iterate.

Review

I Recursive algorithm → recurrence → iterative algorithm

Epilogue: Recovering the Solution (1)

Idea: modify the algorithm to what choice is made at each iteration
WeigthedIS

Initialize array M [0 . . . n] to hold optimal values
Initialize array choose[1 . . . n] to hold choices
M [0] = 0
for j = 1 to n do

M [j] = max(vj + M [pj ], M [j − 1])
Set choose[j] = 1 if first value is bigger, and 0 otherwise

end for

Epilogue: Recovering the Solution (2)

Then trace back from end and "execute" the choices
Use algorithm above to fill in M and choose arrays
O = {}
j = n
while j > 0 do

if choose(j) == 1 then
O = O ∪ {j}
j = pj

else
j = j − 1

end if
end while



Dynamic Programming Recipe

I Step 1: Devise simple recursive algorithm
I Make one decision by trying all possibilities
I Use a recursive solver to evaluate the value of each
I Problem: it does redundant work, often exponential time

I Step 2: Write recurrence for optimal value

I Step 3: Design iterative algorithm

Dynamic Programming Outlook

I First example: Weighted Interval Scheduling
I Binary first choice: j ∈ O or j /∈ O?

I Next time: rod-cutting
I First choice has n options


