

Finding the Actual Path	Proof of Correctness
Keep track of prev(v) = node that last updated arrival time $d'(v)$ = predecessor in shortest path Let A be a priority queue Add s to A with priority $d'(s) = 0$ Set prev(s) = null For all $v \neq s$, add v to A with priority $d'(v) = \infty$ while A not empty do Extract node $v \in A$ with smallest $d'(v)$ value Set $d(v) = d'(v)$ for all edges (v, w) where $w \in A$ do if $d(v) + \ell(v, w) < d'(w)$ then $d'(w) = d(v) + \ell(v, w)$ prev(w) = v end if end for end while	 Let S = V \ A be the set of <i>explored</i> nodes at any point in the algorithm (i.e., we removed these nodes from queue and assigned d(v)) Claim (invariant): for v ∈ S, the value d(v) is the length of the shorest s → v-path Proof on board, by induction on S . See pp 139–140.