	Greedy Algorithms
CS 312: Algorithms Dan Sheldon Mount Holyoke College Last Compiled: October 1, 2018	We are moving on to our study of algorithm design techniques: Greedy Divide-and-conquer Dynamic programming Network flow Let's jump right in, then characterize later what is means to be "greedy".
Interval Scheduling	Interval Scheduling
 In the 80s, your only opportunity to watch a specific TV show was the time it was broadcast. Unfortunately, on a given night there might be multiple shows that you want to watch and some of the broadcast times overlap. Example on board You want to watch the highest number of shows. Which subset of shows do you pick? Fine print: assume you like all shows equally, you only have one TV, and you need to watch shows in their entirety. 	 Let's formalize the problem Shows 1, 2,, n (more generally: "requests" to be fulfilled with a given resource) s_j: start time of show j f_j (sometimes f(j)): finish time of show j Shows i and j are compatible if they don't overlap. Set A of shows is compatible all pairs in A are compatible. Set A of shows is optimal if it is compatible and no other compatible set is larger.
Greedy Algorithms	Greedy Algorithm for Interval Scheduling
 Main idea in greedy algorithms is to make one choice at a time in a "greedy" fashion. (Choose the thing that looks best, never look back) For shows, we will sort in some "natural order" and add shows to list one by one if they are compatible with the shows already chosen. Concretely: <i>R</i> ← be the set of all shows sorted by some property <i>A</i> ← {}	 What's a "natural order"? Start Time: Consider shows in ascending order of s_j. Finish Time: Consider shows in ascending order of f_j. Shortest Time: Consider shows in ascending order of f_j - s_j. Fewest Conflicts: Let c_j be number of shows which overlap with show j. Consider shows in ascending order of c_j. Sorting shows by finish time gives an optimal solution in examples. Let's try to prove that it will always be optimal.

 Analysis Let A be the set of shows returned by the algorithm when shows are sorted by finish time. What do we need to prove? A is compatible (obvious property of algorithm) A is optimal We will prove A is optimal by a "greedy stays ahead" argument Proof on board. 	 Ordering by Finish Time is Optimal: "Greedy Stays Ahead" Let A = i₁,, i_k be the intervals selected by the greedy algorithm Let O = j₁,, j_m be the intervals of some optimal solution O Assume both are sorted by finish time A: i1 i2 ik 0: j1 j2 jm Could it be the case that m > k? Observation: f(i₁) ≤ f(j₁). The first show in A finishes no later than the first show in O. Claim ("greedy stays ahead"): f(i_r) ≤ f(j_r) for all r = 1, 2, The rth show in A finishes no later than the rth show in O.
"Greedy Stays Ahead" • Claim: $f(i_r) \le f(j_r)$ for all $r = 1, 2,$ • Proof by induction on r • Base case $(r = 1)$: i_r is the first choice of the greedy algorithm, which has the earliest overall finish time, so $f(i_r) \le f(j_r)$	Induction step:• Assume inductively that $f(i_{r-1}) \leq f(j_{r-1})$ • Assume for sake of contradiction that $f(i_r) \geq f(j_r)$ A: $ i1 \dots i(r-1) iirir $ 0: $ j1 \dots j(r-1) ijr $ • But it must be the case that j_r is compatible with the first $r-1$ shows in A , because (using induction hypothesis) $s(j_r) \geq f(j_{r-1}) \geq f(i_{r-1})$ • Therefore, the greedy algorithm could have selected j_r instead of i_r . But j_r finishes sooner than i_r , which contradicts the algorithm.• Therefore, it must be the case that $f(i_r) \leq f(j_r)$
Running Time? $R \leftarrow$ be the set of all shows sorted by some property $A \leftarrow \{\}$ > selected shows while R is not empty do Take first show i from R Add i to A Delete i and all overlapping shows from R end while $\Theta(n \log n)$ — dominated by sort Running time analysis is usually easy for greedy algorithms	Algorithm Design—Greedy Greedy: make a single "greedy" choice at a time, don't look back.