
CS 312: Algorithms

Dan Sheldon

Mount Holyoke College

Last Compiled: October 1, 2018

Greedy Algorithms

We are moving on to our study of algorithm design techniques:

I Greedy
I Divide-and-conquer
I Dynamic programming
I Network flow

Let’s jump right in, then characterize later what is means to be
“greedy”.

Interval Scheduling

I In the 80s, your only opportunity to watch a specific TV show
was the time it was broadcast. Unfortunately, on a given night
there might be multiple shows that you want to watch and some
of the broadcast times overlap.

Example on board

I You want to watch the highest number of shows. Which subset
of shows do you pick?

I Fine print: assume you like all shows equally, you only have one
TV, and you need to watch shows in their entirety.

Interval Scheduling

Let’s formalize the problem

I Shows 1, 2, . . . , n (more generally: “requests” to be fulfilled with
a given resource)

I sj : start time of show j
I fj (sometimes f(j)): finish time of show j
I Shows i and j are compatible if they don’t overlap.
I Set A of shows is compatible all pairs in A are compatible.
I Set A of shows is optimal. . . if it is compatible and no other

compatible set is larger.

Greedy Algorithms

I Main idea in greedy algorithms is to make one choice at a time in
a “greedy” fashion. (Choose the thing that looks best, never look
back. . .)

I For shows, we will sort in some “natural order" and add shows to
list one by one if they are compatible with the shows already
chosen. Concretely:

R Ω be the set of all shows sorted by some property

A Ω {} Û selected shows
while R is not empty do

Take first show i from R
Add i to A
Delete i and all overlapping shows from R

end while

Greedy Algorithm for Interval Scheduling

I What’s a “natural order“?
I

Start Time: Consider shows in ascending order of sj .
I

Finish Time: Consider shows in ascending order of fj .
I

Shortest Time: Consider shows in ascending order of fj ≠ sj .
I

Fewest Conflicts: Let cj be number of shows which overlap
with show j. Consider shows in ascending order of cj .

I Sorting shows by finish time gives an optimal solution in
examples. Let’s try to prove that it will always be optimal.

Analysis

Let A be the set of shows returned by the algorithm when shows are
sorted by finish time. What do we need to prove?

I A is compatible (obvious property of algorithm)
I A is optimal

We will prove A is optimal by a “greedy stays ahead” argument
Proof on board.

Ordering by Finish Time is Optimal: “Greedy Stays Ahead”

I Let A = i1, . . . , ik be the intervals selected by the greedy algorithm

I Let O = j1, . . . , jm be the intervals of some optimal solution O

I Assume both are sorted by finish time
A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| ... |----jm----|

I Could it be the case that m > k?

I Observation: f(i1) Æ f(j1). The first show in A finishes no later than
the first show in O.

I
Claim (“greedy stays ahead”): f(ir) Æ f(jr) for all r = 1, 2, The
rth show in A finishes no later than the rth show in O.

“Greedy Stays Ahead”

I
Claim: f(ir) Æ f(jr) for all r = 1, 2, . . .

I
Proof by induction on r

I
Base case (r = 1): ir is the first choice of the greedy algorithm,
which has the earliest overall finish time, so f(ir) Æ f(jr)

Induction step:

I Assume inductively that f(ir≠1) Æ f(jr≠1)

I Assume for sake of contradiction that f(ir) Ø f(jr)

A: |--i1--| ... |---i(r-1)---||-------ir------|
O: |---j1---| ... |---j(r-1)---||----jr-----|

I But it must be the case that jr is compatible with the first r ≠ 1 shows
in A, because (using induction hypothesis)

s(jr) Ø f(jr≠1) Ø f(ir≠1)

I Therefore, the greedy algorithm could have selected jr instead of ir.
But jr finishes sooner than ir, which contradicts the algorithm.

I Therefore, it must be the case that f(ir) Æ f(jr)

Running Time?

R Ω be the set of all shows sorted by some property

A Ω {} Û selected shows
while R is not empty do

Take first show i from R
Add i to A
Delete i and all overlapping shows from R

end while

�(n log n) — dominated by sort

Running time analysis is usually easy for greedy algorithms

Algorithm Design—Greedy

Greedy: make a single “greedy” choice at a time, don’t look back.

Greedy
Formulate problem ?
Design algorithm easy
Prove correctness hard
Analyze running time easy

Focus is on proof techniques. Next time: another proof technique.

