

## More Big- $\Omega$ Motivation

Algorithm sum-product
sum $=0$
for $i=1$ to $n$ do
for $j=i$ to $n$ do
sum $+=A[i]^{*} A[j]$
end for
end for
What is the running time of sum-product?

Easy to see it is $O\left(n^{2}\right)$. Could it be better? $O(n)$ ?

## Big- $\Omega$

Exercise: let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega\left(n^{2}\right)$

Algorithm sum-product
sum $=0$
for $i=1$ to $n$ do
for $j=i$ to $n$ do sum $+=A[i]^{*} A[j]$
end for
end for

Do on board: easy way and hard way

## Big- $\Omega$ Motivation

Algorithm foo
for $i=1$ to $n$ do for $j=1$ to $n$ do do something...
end for
end for
Fact: run time is $O\left(n^{3}\right)$

## Algorithm bar

for $i=1$ to $n$ do
for $j=1$ to $n$ do
for $k=1$ to $n$ do do something else. end for
end for
end for
Fact: run time is $O\left(n^{3}\right)$

Conclusion: foo and bar have the same asymptotic running time. What is wrong?

Informally: $T$ grows at least as fast as $f$

Definition: The function $T(n)$ is $\Omega(f(n))$ if there exist constants $c \geq 0$ and $n_{0} \geq 0$ such that

$$
T(n) \geq c f(n) \text { for all } n \geq n_{0}
$$

$f$ is an asymptotic lower bound for $T$

## Exercise review

Hard way

- Count exactly how many times the loop executes

$$
1+2+\ldots+n=\frac{n(n+1)}{2}=\Omega\left(n^{2}\right)
$$

Easy way

- Ignore all loop executions where $i>n / 2$ or $j<n / 2$
- The inner statement executes at least $(n / 2)^{2}=\Omega\left(n^{2}\right)$ times
Big- $\Theta$
Definition: the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and
$\Omega(f(n))$.
$f$ is an asymptotically tight bound of $T$


## Big- $\Theta$ example

How do we correctly compare the running time of these algorithms?

```
Algorithm foo
    for \(i=1\) to \(n\) do
            for \(j=1\) to \(n\) do
            do something...
        end for
    end for
```

Algorithm bar
Definition: the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and
$\Omega(f(n))$.
$f$ is an asymptotically tight bound of $T$

## Additivity Revisited

Suppose $f$ and $g$ are two (non-negative) functions and $f$ is $O(g)$
Old version: Then $f+g$ is $O(g)$
New version: Then $f+g$ is $\Theta(g)$

Example:

$$
\underbrace{n^{2}}_{g}+\underbrace{42 n+n \log n}_{f} \text { is } \Theta\left(n^{2}\right)
$$

## Algorithm design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm's running time


## Review: Asymptotics

| Property | Definition / terminology |
| :---: | :--- |
| $f(n)$ is $O(g(n))$ | $\exists c, n_{0}$ s.t. $f(n) \leq c g(n)$ for all $n \geq n_{0}$ <br> $g$ is an asymptotic upper bound on $f$ <br> $f(n)$ is $\Omega(g(n))$ <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Equivalently: $g(n)$ is $O(f(n))$ <br> $g$ is an asymptotic lower bound on $f$ <br>  <br>  <br> $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$ <br> $g$ is an asymptotically tight bound on $f$ |

## Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices?

- Mathematical: describes the algorithm. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation).
- Worst-case: just works. ("average case" appealing, but hard to analyze)
- Function of input size: allows predictions. What will happen on a new input?


## Efficiency

When is an algorithm efficient?
Stable Matching Brute force: $\Omega(n!)$
Propose-and-Reject?: $O\left(n^{2}\right)$
We must have done something clever

Polynomial Time

Working definition of efficient

Definition: an algorithm runs in polynomial time if its running time is $O\left(n^{d}\right)$ for some constant $d$

- Matches practice: almost all practically efficient algorithms have this property
- Usually distinguishes a clever algorithm from a "brute force" approach.
- Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.

Next Time

- Graphs

