
CS 312: Algorithms

Dan Sheldon

Mount Holyoke College

Last Compiled: September 11, 2018

Big-Ω Motivation

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

end for
end for

Fact: run time is O(n3)

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..
end for

end for
end for

Fact: run time is O(n3)

Conclusion: foo and bar have the same asymptotic running time.
What is wrong?

More Big-Ω Motivation

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

What is the running time of sum-product?

Easy to see it is O(n2). Could it be better? O(n)?

Big-Ω

Informally: T grows at least as fast as f

Definition: The function T (n) is Ω(f(n)) if there exist constants
c ≥ 0 and n0 ≥ 0 such that

T (n) ≥ cf(n) for all n ≥ n0

f is an asymptotic lower bound for T

Big-Ω

Exercise: let T (n) be the running time of sum-product. Show that
T (n) is Ω(n2)

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

Do on board: easy way and hard way

Exercise review

Hard way

I Count exactly how many times the loop executes

1 + 2 + . . . + n = n(n + 1)
2 = Ω(n2)

Easy way

I Ignore all loop executions where i > n/2 or j < n/2
I The inner statement executes at least (n/2)2 = Ω(n2) times



Big-Θ

Definition: the function T (n) is Θ(f(n)) if it is both O(f(n)) and
Ω(f(n)).

f is an asymptotically tight bound of T

Big-Θ example

How do we correctly compare the running time of these algorithms?

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

end for
end for

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..
end for

end for
end for

Answer: foo is Θ(n2) and bar is Θ(n3). They do not have the
same asymptotic running time.

Additivity Revisited

Suppose f and g are two (non-negative) functions and f is O(g)

Old version: Then f + g is O(g)

New version: Then f + g is Θ(g)

Example:
n2

︸︷︷︸
g

+ 42n + n log n︸ ︷︷ ︸
f

is Θ(n2)

Review: Asymptotics

Property Definition / terminology
f(n) is O(g(n)) ∃c, n0 s.t. f(n) ≤ cg(n) for all n ≥ n0

g is an asymptotic upper bound on f

f(n) is Ω(g(n)) ∃c, n0 s.t. f(n) ≥ cg(n) for all n ≥ n0
Equivalently: g(n) is O(f(n))
g is an asymptotic lower bound on f

f(n) is Θ(g(n)) f(n) is O(g(n)) and f(n) is Ω(g(n))
g is an asymptotically tight bound on f

Algorithm design

I Formulate the problem precisely

I Design an algorithm to solve the problem

I Prove the algorithm is correct

I Analyze the algorithm’s running time

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as
function of input size. Why these choices?

I Mathematical: describes the algorithm. Avoids hard-to-control
experimental factors (CPU, programming language, quality of
implementation).

I Worst-case: just works. (“average case” appealing, but hard to
analyze)

I Function of input size: allows predictions. What will happen on
a new input?



Efficiency

When is an algorithm efficient?

Stable Matching Brute force: Ω(n!)
Propose-and-Reject?: O(n2)

We must have done something clever

Polynomial Time

Working definition of efficient

Definition: an algorithm runs in polynomial time if its running time
is O(nd) for some constant d

I Matches practice: almost all practically efficient algorithms
have this property

I Usually distinguishes a clever algorithm from a “brute force”
approach.

I Refutable: gives us a way of saying an algorithm is not efficient,
or that no efficient algorithm exists.

Next Time

I Graphs


