CS 312: Algorithms

Dan Sheldon

Mount Holyoke College

Last Compiled: September 10, 2018

Algorithm design

v

Formulate the problem precisely

» Design an algorithm to solve the problem

v

Prove the algorithm is correct

v

Analyze the algorithm’s running time

Big-O: Motivation

What is the running time of this algorithm? How many “primitive
steps” are executed for an input of size n?

sum =0
for i=1ton do
for j=1ton do
sum += A[i]*A[j]
end for
end for

The running time is

T(n)=2n 4+n+1.

For large values of n, T'(n) is less than some multiple of n2. We say
T(n) is O(n?) and we typically don't care about other terms.

Big-O: Formal Definition

Definition: The function T'(n) is O(f(n)) if there exist constants
¢ >0 and ng > 0 such that

T(n) < cf(n) for all n > ng
We say that f is an asymptotic upper bound for T'.

Examples: work through / plot

> If T(n) = n? + 10000007 then T'(n) is O(n?)

> If T(n) = n3 + nlogn then T(n) is O(n?)

> If T(n) = 2VI°8" then T'(n) is O(n)

> If T(n) = n3 then T(n) is O(n?) but it's also O(n?), O(n®)

The Big Idea: How to Use Big-O

1. Study pseudocode to determine running time T'(n) of an
algorithm as a function of n:

T(n) = 23n% + 17n + 15

2. Prove that T'(n) is asymptotically upper-bounded by simpler
function using big-O definition:
T(n) = 230> +1Tn + 15
<23n% +17n% +15n% ifn>1

55n2 ifn>1

IN 1

This is the right way to think about big-O, but too much work.
Therefore, we'll develop some mathematical properties of big-O that
simplify proving big-O bounds for T'(n), and use these properties
to take shortcuts while analyzing algorithms (that you probably
already use).

Properties of Big-O Notation
Claim (Transitivity): If fis O(g) and g is O(h), then f is O(h).
Proof: we know from the definition that

> f(n) < cg(n) for all n > ng
> g(n) < dh(n) for all n > nj

Therefore
f(n) <cg(n) ifn>ng
<c(dh(n)) ifn>ngand n>n
= \c?h(n) if n > max{ng, n{}
¢ g
f(n) < "h(n) if n > ng

Know how to do proofs using Big-O definition.

Properties of Big-O Notation

Claims (Additivity):

> If fis O(h) and g is O(h), then f 4 g is O(h).
> If f1, fo,..., fr are each O(h), then fi+ fo+ ...+ fi is O(h).
> If fis O(g), then f + g is O(g).

We'll go through a couple of examples. ..

Consequences of Additivity

» OK to drop lower order terms. E.g., if
f(n) = 4.1n% 4 23n 4+ nlogn

then f(n) is O(n?)
» Polynomials: Only highest degree term matters. E.g., if

f(n) =ao+ain+am® + ...+ agn?, aqg>0

then f(n) is O(n%)

Other Useful Facts: Log vs. Poly vs. Exp

Fact: log,(n) is O(n?) for all b and d

All polynomials grow faster than logarithm of any base

Fact: n¢ is O(r") when r > 1

Exponential functions grow faster than polynomials

Logarithm review
Definition: logy(a) is the unique number ¢ such that b° = a

Informally: the number of times you can divide a into b parts until
each part has size one

Properties:

» Log of product — sum of logs

> log(zy) =logz +logy
> log(z*) = kloga

> log,(-) is inverse of b()
> log,(b") =n
> plogs(n) —

When using big-O, it's OK not to specify base. Assume log, if not
specified.

Big-O sorting

Which grows faster, n(logn)? or n*/3?

Informal reasoning:

n(logn)® < n*3?
(logn)® < n'/32

logn < n!/9?

Yes, because logn is O(n?) for all d. Therefore, n(logn)? is
O(n*/3).

Apply transformations to both functions. Be careful that they
preserve the inequality and are invertible. Try taking log.

Formal Proof
Informal reasoning from previous slide:

n(logn)® < n*3?
(logn)® < n'/3?

logn < nt/97

Formal proof (go through transformations in reverse). We know
logn is O(nl/g), so there exist constants ¢, ng > 0 such that:

9

logn < ent/ for all n > ng

— (log n)5 < Apl/3 for all n > ng
<~

n(logn)® < & n*3 for all n > ng

<

Therefore, n(logn)?® is O(n*/3).

Big-O: Correct Usage

Big-O: a way to categorize growth rate of functions relative to
other functions.

Not: “the running time of my algorithm”.
Correct Usage:
> The running time of the algorithm in input of size n is T'(n).
> T(n) is O(n3).
» The running time of the algorithm is O(n?).
Incorrect Usage:
» O(n®) is the running time of the algorithm. (There are

many different asymptotic upper bounds to the running time of
the algorithm.)

Next time

» Big-{2 and Big-© notation

