	Algorithm design
CS 312: Algorithms Dan Sheldon Mount Holyoke College	 Formulate the problem precisely Design an algorithm to solve the problem Prove the algorithm is correct Analyze the algorithm's running time
Last Compiled: September 10, 2018	
Big-O: Motivation What is the running time of this algorithm? How many "primitive steps" are executed for an input of size n ?	Big-O: Formal Definition Definition: The function $T(n)$ is $O(f(n))$ if there exist constants
$\begin{split} & sum = 0 \\ & for i = 1 \ to \ n \ do \\ & for j = 1 \ to \ n \ do \\ & sum + = A[i]^* A[j] \\ & end \ for \\ & end \ for \\ & end \ for \\ & The \ running \ time \ is \\ & T(n) = 2n^2 + n + 1 \ . \end{split}$	$c \ge 0 \text{ and } n_0 \ge 0 \text{ such that}$ $T(n) \le cf(n) \text{ for all } n \ge n_0$ We say that f is an asymptotic upper bound for T . Examples: work through / plot $If T(n) = n^2 + 100000n \text{ then } T(n) \text{ is } O(n^2)$ $If T(n) = n^3 + n \log n \text{ then } T(n) \text{ is } O(n^3)$ $If T(n) = 2^{\sqrt{\log n}} \text{ then } T(n) \text{ is } O(n)$ $If T(n) = n^3 \text{ then } T(n) \text{ is } O(n^4) \text{ but it's also } O(n^3), O(n^5)$ etc.
The Big Idea: How to Use Big-O 1. Study pseudocode to determine running time $T(n)$ of an algorithm as a function of n :	Properties of Big-O Notation Claim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$. Proof: we know from the definition that
$T(n)=23n^2+17n+15$ 2. Prove that $T(n)$ is asymptotically upper-bounded by simpler function using big-O definition:	▶ $f(n) \le cg(n)$ for all $n \ge n_0$ ▶ $g(n) \le c'h(n)$ for all $n \ge n'_0$
$T(n) = 23n^{2} + 17n + 15$ $\leq 23n^{2} + 17n^{2} + 15n^{2} \text{if } n \geq 1$ $\leq 55n^{2} \qquad \text{if } n \geq 1$	Therefore $f(n) \leq cg(n) \text{if } n \geq n_0$ $\leq c(c'h(n)) \text{if } n \geq n_0 \text{ and } n \geq n'_0$ $= \underbrace{cc'}_{c''}h(n) \text{if } n \geq \underbrace{\max\{n_0, n'_0\}}_{n''_0}$
This is the right way to think about big-O, but too much work. Therefore, we'll develop some mathematical properties of big-O that simplify proving big-O bounds for $T(n)$, and use these properties to take shortcuts while analyzing algorithms (that you probably already use).	$f(n) \leq c'' h(n) \qquad \qquad$

Properties of Big-O Notation	Consequences of Additivity
 Claims (Additivity): If f is O(h) and g is O(h), then f + g is O(h). If f₁, f₂,, f_k are each O(h), then f₁ + f₂ + + f_k is O(h). If f is O(g), then f + g is O(g). We'll go through a couple of examples 	 ▶ OK to drop lower order terms. E.g., if f(n) = 4.1n³ + 23n + n log n then f(n) is O(n³) ▶ Polynomials: Only highest degree term matters. E.g., if f(n) = a₀ + a₁n + a₂n² + + a_dn^d, a_d > 0 then f(n) is O(n^d)
Other Useful Facts: Log vs. Poly vs. Exp	Logarithm review Definition: $log_b(a)$ is the unique number c such that $b^c = a$ Informally: the number of times you can divide a into b parts until each part has size one
Fact: $\log_b(n)$ is $O(n^d)$ for all b and d All polynomials grow faster than logarithm of any base Fact: n^d is $O(r^n)$ when $r > 1$ Exponential functions grow faster than polynomials	Properties: • Log of product \rightarrow sum of logs • $\log(xy) = \log x + \log y$ • $\log(x^k) = k \log x$ • $\log_b(\cdot)$ is inverse of $b^{(\cdot)}$ • $\log_b(b^n) = n$ • $b^{\log_b(n)} = n$
Big-O sorting	When using big-O, it's OK not to specify base. Assume log2 if not specified. Formal Proof
Which grows faster, $n(\log n)^3$ or $n^{4/3}$? Informal reasoning: $n(\log n)^3 \leq n^{4/3}$?	Informal reasoning from previous slide: $n(\log n)^3 \le n^{4/3}?$ $(\log n)^3 \le n^{1/3}?$ $\log n \le n^{1/9}?$
$(\log n)^3 \le n^{1/3}?$ $\log n \le n^{1/9}?$ Yes, because $\log n$ is $O(n^d)$ for all d . Therefore, $n(\log n)^3$ is $O(n^{4/3})$. Apply transformations to both functions. Be careful that they	Formal proof (go through transformations in reverse). We know $\log n$ is $O(n^{1/9})$, so there exist constants $c, n_0 \ge 0$ such that: $\log n \le cn^{1/9}$ for all $n \ge n_0$ $\iff (\log n)^3 \le c^3 n^{1/3}$ for all $n \ge n_0$ $\iff n(\log n)^3 \le c^3 n^{4/3}$ for all $n \ge n_0$
preserve the inequality and are invertible. Try taking log.	Therefore, $n(\log n)^3$ is $O(n^{4/3}).$

Big-O: Correct Usage	Next time
Big-O : a way to categorize growth rate of functions relative to other functions.	
Not : "the running time of my algorithm".	
Correct Usage:	
 ► The running time of the algorithm in input of size n is T(n). ► T(n) is O(n³). 	▶ Big-Ω and Big-Θ notation
• The running time of the algorithm is $O(n^3)$.	
Incorrect Usage:	
 O(n³) is <i>the</i> running time of the algorithm. (There are many different asymptotic upper bounds to the running time of the algorithm.) 	