
CS 312: Algorithms

Dan Sheldon

Mount Holyoke College

Last Compiled: September 10, 2018

Algorithm design

I Formulate the problem precisely
I Design an algorithm to solve the problem
I Prove the algorithm is correct
I Analyze the algorithm’s running time

Big-O: Motivation
What is the running time of this algorithm? How many “primitive
steps” are executed for an input of size n?

sum = 0
for i= 1 to n do

for j= 1 to n do
sum += A[i]*A[j]

end for
end for

The running time is

T (n) = 2n2 + n + 1 .

For large values of n, T (n) is less than some multiple of n2. We say
T (n) is O(n2) and we typically don’t care about other terms.

Big-O: Formal Definition

Definition: The function T (n) is O(f(n)) if there exist constants
c ≥ 0 and n0 ≥ 0 such that

T (n) ≤ cf(n) for all n ≥ n0

We say that f is an asymptotic upper bound for T .

Examples: work through / plot

I If T (n) = n2 + 1000000n then T (n) is O(n2)
I If T (n) = n3 + n log n then T (n) is O(n3)
I If T (n) = 2

√
log n then T (n) is O(n)

I If T (n) = n3 then T (n) is O(n4) but it’s also O(n3), O(n5)
etc.

The Big Idea: How to Use Big-O
1. Study pseudocode to determine running time T (n) of an

algorithm as a function of n:

T (n) = 23n2 + 17n + 15

2. Prove that T (n) is asymptotically upper-bounded by simpler
function using big-O definition:

T (n) = 23n2 + 17n + 15
≤ 23n2 + 17n2 + 15n2 if n ≥ 1
≤ 55n2 if n ≥ 1

This is the right way to think about big-O, but too much work.
Therefore, we’ll develop some mathematical properties of big-O that
simplify proving big-O bounds for T (n), and use these properties
to take shortcuts while analyzing algorithms (that you probably
already use).

Properties of Big-O Notation
Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).

Proof: we know from the definition that

I f(n) ≤ cg(n) for all n ≥ n0
I g(n) ≤ c′h(n) for all n ≥ n′0

Therefore

f(n) ≤ cg(n) if n ≥ n0

≤ c(c′h(n)) if n ≥ n0 and n ≥ n′0
= cc′︸︷︷︸

c′′

h(n) if n ≥ max{n0, n′0}︸ ︷︷ ︸
n′′

0

f(n) ≤ c′′h(n) if n ≥ n′′0

Know how to do proofs using Big-O definition.



Properties of Big-O Notation

Claims (Additivity):

I If f is O(h) and g is O(h), then f + g is O(h).
I If f1, f2, . . . , fk are each O(h), then f1 + f2 + . . . + fk is O(h).
I If f is O(g), then f + g is O(g).

We’ll go through a couple of examples. . .

Consequences of Additivity

I OK to drop lower order terms. E.g., if

f(n) = 4.1n3 + 23n + n log n

then f(n) is O(n3)
I Polynomials: Only highest degree term matters. E.g., if

f(n) = a0 + a1n + a2n2 + . . . + adnd, ad > 0

then f(n) is O(nd)

Other Useful Facts: Log vs. Poly vs. Exp

Fact: logb(n) is O(nd) for all b and d

All polynomials grow faster than logarithm of any base

Fact: nd is O(rn) when r > 1

Exponential functions grow faster than polynomials

Logarithm review
Definition: logb(a) is the unique number c such that bc = a

Informally: the number of times you can divide a into b parts until
each part has size one

Properties:

I Log of product → sum of logs
I log(xy) = log x + log y
I log(xk) = k log x

I logb(·) is inverse of b(·)

I logb(bn) = n
I blogb(n) = n

When using big-O, it’s OK not to specify base. Assume log2 if not
specified.

Big-O sorting

Which grows faster, n(log n)3 or n4/3?
Informal reasoning:

n(log n)3 ≤ n4/3?
(log n)3 ≤ n1/3?

log n ≤ n1/9?

Yes, because log n is O(nd) for all d. Therefore, n(log n)3 is
O(n4/3).

Apply transformations to both functions. Be careful that they
preserve the inequality and are invertible. Try taking log.

Formal Proof
Informal reasoning from previous slide:

n(log n)3 ≤ n4/3?
(log n)3 ≤ n1/3?

log n ≤ n1/9?

Formal proof (go through transformations in reverse). We know
log n is O(n1/9), so there exist constants c, n0 ≥ 0 such that:

log n ≤ cn1/9 for all n ≥ n0

⇐⇒ (log n)3 ≤ c3n1/3 for all n ≥ n0

⇐⇒ n(log n)3 ≤ c3
︸︷︷︸

c′

n4/3 for all n ≥ n0

Therefore, n(log n)3 is O(n4/3).



Big-O: Correct Usage

Big-O: a way to categorize growth rate of functions relative to
other functions.
Not: “the running time of my algorithm”.

Correct Usage:

I The running time of the algorithm in input of size n is T (n).
I T (n) is O(n3).
I The running time of the algorithm is O(n3).

Incorrect Usage:

I O(n3) is the running time of the algorithm. (There are
many different asymptotic upper bounds to the running time of
the algorithm.)

Next time

I Big-Ω and Big-Θ notation


