CS 312: Algorithms Fall 2018

Fourth Hour 9

Your Name: Collaborators:

You will be randomly assigned groups to work on these problems in discussion section.
Problem 1. Maximum Independent Set. This will be a homework problem.

Let G = (V,E) be an undirected graph with n nodes. Recall that a subset of the nodes is called an
independent set if no two of them are joined by an edge. Finding large independent sets is difficult in
general; but here well see that it can be done efficiently if the graph is ”simple” enough.

Call a graph G = (V, E) a path if its nodes can be written as vy, vs, - ,v, with an edge between v; and
v; if and only if the numbers ¢ and j differ by exactly 1. With each node v;, we associate a positive integer
weight w;.

Consider, for example, the following five-node path. The weights are the numbers drawn inside the nodes.

The goal in this question is to solve the following problem: Find an independent set in a path G whose total
weight is as large as possible.

(a) Give an example to show that the following algorithm does not always find an independent set of
maximum total weight.

Start with S equal to the empty set
while some node remains in G do
Pick a node v; of maximum weight
Add v; to S
Delete v; and its neighbors from G
end while
return S

(b) Give an example to show that the following algorithm also does not always find an independent set of
maximum total weight.

Let S; be the set of all v; where 7 is an odd number

Let S be the set of all v; where 7 is an even number

(Note that S; and Sy are both independent sets)

Determine which of S; or S has greater total weight, and return this one

(c) Give an algorithm that takes an n-node path G with weights and returns an independent set of
maximum total weight. The running time should be polynomial in n, independent of the values of the
weights.



Discussion 9 2

Problem 2. Longest Increasing Subsequence. In the longest increasing subsequence problem, you are
given as input an unsorted array A of length n, e.g,

A=5,210,3,-1,6,8,9,3

The goal is to find the longest strictly increasing subsequence of A. The subsequence need not be continguous.
For example, the boxed numbers below indicate the longest increasing subsequence in our example:

A=5[2]10,[3] -1,[6],[8][9]3

To approach this problem, it is first helpful to define a “helper” function LIS(j) to compute the length of the
longest increasing subsequence that ends at index j (and includes item A[j]). Here are examples for j = 3

and j = 5:
5,[2],[10] 5,2,10,3,[-1]

Therefore LIS(3) should return 2, and LIS(5) should return 1.

1. Write a recursive algorithm for LIS(j)

2. Translate this recursive algorithm into a recurrence. Define OPT(j) to be the length of the longest
increasing subsequence ending at index j, and write a recurrence for OPT(j).

3. Use this recurrence to write an iterative algorithm to compute the value of OPT(j) and store it in the
array entry M|[j] for all j.

4. Use the computed optimal values to find the value of the overall longest increasing subsequence (ending
at any j).



