
COMPSCI 311: Introduction to Algorithms
Lecture 26: Randomized Algorithms. Review

Dan Sheldon

University of Massachusetts Amherst

Randomization + Approximation: Max-3-Sat

Max-3-Sat. Given a 3-Sat formula, find a truth assignment that satisfies as many
clauses as possible
(Note: three distinct variables per clause)

C1 = x2 ∨ x̄3 ∨ x̄4

C2 = x2 ∨ x3 ∨ x̄4

C3 = x̄1 ∨ x2 ∨ x4

C4 = x̄1 ∨ x̄2 ∨ x3

C5 = x1 ∨ x̄2 ∨ x̄4

Remark NP-hard search problem

Simple idea. Set each variable true with probability 1
2 , independently

Randomized Max-3-Sat

For any clause Ci:
Pr[don’t satisfy Ci] = (1

2)3 = 1
8

Pr[satisfy Ci] = 7
8

Assume k clauses =⇒ expected number of satsified clauses = 7
8k

(linearity of expectation)

Corollary: expected number of clauses satisfied by a random assignment is ≥ 7
8 of

optimal (no assignment can satisfy more than k)

A randomized approximation algorithm (guarantee for expected value)

Clicker

Consider a 2-Sat instance with k clauses where each clause has two distinct variables.
Suppose each variable is set to true independently with probability 1

2 . What is the
expected number of satisfied clauses?

A. 1
4k

B. 1
2k

C. 3
4k

D. 7
8k

Probabilistic Method
Prove an object exists by showing that a randomized procedure finds it with nonzero
probability.

Corollary: For every 3-Sat instance with k clauses, there is a truth assignment that
satisfies ≥ 7

8k clauses.

Proof: Expected number of satisfied clauses is 7
8k;

a random variable is at least expected value with nonzero probability

Corollary. Every 3-SAT instance with ≤ 7 clauses is satisfiable!

Proof: There is some assignment that satisfies ≥ 7
8k clauses. Then

unsatisfied clauses ≤ k

8 ≤ 7
8 < 1

There are no unsatisfied clauses.

Clicker

For what number of clauses can we guarantee that a 2-Sat formula is satisfiable?

A. 2 or fewer

B. 3 or fewer

C. 3 or more

D. 4 or fewer

Example:
(x1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x̄2)

What if We Want to Guarantee to Satisfy 7
8k clauses?

Fact. We can derandomize the previous algorithm ⇒ deterministic poly-time algorithm
to satisfy ≥ 7

8k clauses.

▶ Idea: try x1 = 1 and x1 = 0, calculate expected # satisfied clauses. Choose best
and repeat.

Fact. No poly-time algorithm can find an assignment satisfying ≥ (7
8 + ϵ)k for every

satisfiable formula unless P = NP.

Summary

Final Topics

▶ (No randomized, approximation algorithms)
▶ Polynomial-time reductions
▶ NP-completeness
▶ Network flows
▶ Dynamic programming
▶ Divide-and-conquer
▶ MST
▶ Greedy
▶ Graph algorithms and definitions
▶ Asymptotic analysis

Reminder

Please fill out course survey!

http://owl.umass.edu/partners/courseEvalSurvey/uma/

Polynomial Time Reductions
▶ We focus on decision problems, e.g., for input ⟨G, k⟩, does there exist a vertex

cover with at most k nodes?

▶ Given two decision problems X and Y , X ≤P Y means that it’s possible to
transform an input I of X into an input f(I) of Y in polynomial time such that

I is a yes instance of X iff f(I) is a yes instance of Y

The transformation is a reduction from X to Y .

▶ We saw examples such as

VertexCover ≤P IndependentSet

3-SAT ≤P IndependentSet

▶ Useful property: If X ≤P Y and Y ≤P Z then X ≤P Z.

NP Completeness
▶ P = set of problems you can solve in polynomial time, e.g., minimum spanning tree,

matchings, flows, shortest path.
▶ NP = set of problems you can verify in polynomial time:

▶ If the answer should be yes then there’s some extra input (a “witness” or “certificate”
or “hint”) that you can be given that makes it easy (i.e., in poly time) to check
answer is yes

▶ If the answer should be “no” then there is no such input.
▶ Y is NP -Complete if Y ∈ NP and X ≤P Y ∀ X ∈ NP .
▶ Useful Properties: Suppose X ≤P Y . Then

▶ If Y ∈ P then X ∈ P .
▶ If Y ∈ NP and X is NP-complete then Y is also NP complete
▶ If Y ∈ P and X is NP-complete then P = NP .

▶ NP -Complete problems are in some sense the hardest problems in NP. If you can solve one
of them in polynomial time then you prove P = NP . But very few people believe this is
possible.

NP Complete Problems

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle
Ham-Path

Traveling-Salesman

Subset-Sum

0-1 Knapsack

Graph-Coloring

Constraint satisfaction

Partitioning

NumericalSequencing

Packing

Covering

Network Flows
▶ Flow network

▶ Directed graph
▶ Source node s and target node t
▶ Edge capacities c(e) ≥ 0

▶ Flow
▶ Capacity Constraints: 0 ≤ f(e) ≤ c(e) on each edge
▶ Flow conservation: for all v /∈ {s, t},∑

e into v

f(e) =
∑

e out of v

f(e)

▶ Value v(f) of flow f = total flow on edges leaving source
▶ Max flow problem: find a flow of maximum value

▶ Residual network encodes how you can change the current flow without violating
the capacity constraints.

▶ Ford Fulkerson Algorithm: Repeatedly increases the flow by finding augmenting
paths in the residual network.

Augment Example

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

5

8

31
5

4

3

11

7
5

15

4

12

Augmenting Path

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

5

8

3
5

4

3

11

7
5

15

4

12

1

New Flow

G

v1 v2

v3 v4

ts

11/16

12/13

11/14

0/9

12/12

1/4
7/7

19/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

1

12

31
9

3

11

7
1

19

4

12

Max-Flow Min-Cut Theorem

▶ v(f) ≤ c(A, B) for any flow f and any s-t cut c(A, B)

▶ Upon termination, Ford-Fulkerson produces a flow f and cut (A, B) such that
v(f) = c(A, B), so f is a max-flow and (A, B) is a min-cut

▶ The cut (A, B) is found by letting A = set of nodes reachable from s in residual
graph

Dynamic Programming

▶ Design technique based on recursion. Identify recursive structure by writing
recurrence for optimal value.

▶ The recurrence identifies all subproblems.
▶ Solve them in a systematic way starting from simplest ones first (base case)

Example: Weighted interval scheduling

▶ OPT(j) = max{OPT(j − 1), wj + OPT(p(j))}
▶ OPT(0) = 0
▶ Compute OPT(j) iteratively for j = 0 to n
▶ Running time O(n)

Divide-And-Conquer

▶ Design technique:
▶ Often: divide input into equal sized chunks, solve each recursively, combine to solve

original problem
▶ Can be more subtle—e.g., integer multiplication
▶ Tip: don’t think about what happens inside recursion. “Magic”

▶ Solving recurrences, e.g., T (n) ≤ 2T (n/2) + O(n)
▶ Recursion tree, unrolling
▶ “Guess and verify”: proof by induction
▶ Master theorem Suppose T (n) = aT (n/b) + O(nd). Then:

T (n) =

O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

MST

▶ Definitions: spanning tree, MST, cut
▶ Cut property: lightest edge across any cut belongs to every MST
▶ Prim’s algorithm: maintain a set S of explored nodes. Add cheapest edge from S

to V − S. Repeat.
▶ Kruskal’s algorithm: consider edges in order of cost. Add edge if it does not create

a cycle.
▶ Cycle property: most expensive edge in any cycle does not belong to MST

Greedy Algorithms

▶ Greedy algorithms are “short sighted” algorithms that take each step based on what
looks good in the short term.
▶ Example: Kruskal’s Algorithm adds lightest edge that doesn’t complete a cycle when

building an MST.
▶ Example: When maximizing the number of non-overlapping TV shows we always

added the show that finished earliest out of the remaining shows.

Greedy Algorithms

▶ Things to note:
▶ If a greedy algorithm requires first sorting the input, remember to include the running

time of sorting in your overall analysis.
▶ Focus on correctness proofs: “greedy stays ahead”, “exchange argument”, induction,

contradiction
▶ What to know:

▶ Apply/adapt proof techniques for scheduling problems; solve similar problems
▶ Working knowledge of MST algorithms, Dijkstra: apply to concrete examples,

understand principles and proof techniques

Graph Algorithms: BFS and DFS Trees

▶ BFS from node s:
▶ Partitions nodes into layers L0 = {s}, L1, L2, L3 . . .
▶ Li defined as neighbors of nodes in Li−1 that aren’t already in L0 ∪ L1 ∪ . . . ∪ Li−1.
▶ Li is set of nodes at distance exactly i from s
▶ Returns tree T : for any edge (u, v) in graph, u and v are in same layer or adjacent

layer
▶ Can be used to test whether G is bipartite, find shortest path from s to t

▶ DFS from node s
▶ Returns DFS tree T rooted at s
▶ For any edge (u, v), u is an ancestor of v in the tree or vice versa.

▶ Both run in time O(m + n)
▶ Both can be used to find connected components of graph, test whether there is a

path from s to t

Related “Traversal” Algorithms

Algorithms that grow a set S of explored nodes from starting node s

▶ BFS (traversal): add all nodes v that are neighbors of some node u ∈ S. Repeat.
▶ Dijkstra (shortest paths): add node v with smallest value of d(u) + ℓ(u, v) for some

node u in S, where d(u) is distance from s to u. Repeat.
▶ Prim (MST): add node v with smallest value of c(u, v) where u ∈ S. Repeat.

Bipartite, Directed Graphs

▶ An undirected graph G is bipartite if its nodes can be colored red and blue such
that no edge has two endpoints of the same color
▶ G is bipartite if and only if it does not contain an odd cycle
▶ G is bipartite if and only if, after running BFS from any node, there is no edge

between two nodes in the same layer
▶ A directed graph is acyclic (a DAG) if there is no directed cycle

▶ There is no directed cycle if and only if there is a topological ordering.
▶ Can find a topological order using the fact that a DAG has a node with no incoming

edges.

Asymptotic Analysis

Given two positive functions f(n) and g(n):

▶ f(n) is O(g(n))
▶ iff ∃c > 0, n0 ≥ 0 s.t. f(n) ≤ cg(n) for all n ≥ n0

▶ f(n) is Ω(g(n))
▶ iff ∃c > 0, n0 ≥ 0 s.t. f(n) ≥ cg(n) for all n ≥ n0
▶ iff g(n) is O(f(n))

▶ f(n) is Θ(g(n))
▶ iff f(n) is O(g(n)) and f(n) is Ω(g(n))

▶ Know how to apply definitions, compare functions, use to analyze running time of
algorithms

Thanks!

Good luck on the final, and please fill out the course survey!

http://owl.umass.edu/partners/courseEvalSurvey/uma/

