
COMPSCI 311: Introduction to Algorithms
Lecture 25: Approximation Algorithms

Dan Sheldon

University of Massachusetts Amherst



Coping With NP-Completeness

Suppose you want to solve an NP-complete problem?
What should you do?

You can’t design an algorithm to do all of the following:

1. Solve arbitrary instances of the problem
2. Solve problem to optimality
3. Solve problem in polynomial time

Coping strategies

1. Design algorithms for special cases of problem.
2. Design approximation algorithms or heuristics.
3. Design algorithms that run efficiently for some, but not all, problem instances



Approximation Algorithms

▶ Def: ρ-approximation algorithm
▶ Runs in polynomial time
▶ Solves arbitrary instances of the problem
▶ Guaranteed to find a solution within ratio ρ of optimum:

value of our solution
value of optimum solution ≤ ρ (if goal = minimum)

Today: load balancing



Load Balancing

Input:

▶ Machines 1, 2, . . . , m (identical)
▶ Jobs 1, 2, . . . , n with time tj for jth job
▶ Any job can run on any machine

Goal:

▶ Assign jobs to balance load
▶ Ai = set of jobs assigned to machine i
▶ Minimize completion time = largest load of any machine = “makespan”



Clicker

Let T ∗ be the optimal makespan, i.e., the smallest possible completion time of any
assignment. What can we say about T ∗?

A. T ∗ ≥ 1
m

n∑
j=1

tj (at least as big as the average machine load)

B. T ∗ ≥ max
j

tj (at least as big as the largest job time)

C. Both A and B.

D. Neither A nor B.



Preliminary Analysis
Two lower bounds for optimal solution:

1. T ∗ ≥ 1
m

n∑
j=1

tj

2. T ∗ ≥ max
j

tj

Proof of 1. Otherwise,

total processing time ≤ mT ∗

< m
1
m

n∑
j=1

tj

=
n∑

j=1
tj

= total processing time



Simple Algorithm: Assign to lightest load

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 601

Designing the Algorithm
We first consider a very simple greedy algorithm for the problem. The algorithm
makes one pass through the jobs in any order; when it comes to job j, it assigns
j to the machine whose load is smallest so far.

Greedy-Balance:

Start with no jobs assigned

Set Ti = 0 and A(i) = ∅ for all machines Mi

For j = 1, . . . , n

Let Mi be a machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i) ← A(i) ∪ {j}
Set Ti ← Ti + tj

EndFor

For example, Figure 11.1 shows the result of running this greedy algorithm
on a sequence of six jobs with sizes 2, 3, 4, 6, 2, 2; the resulting makespan is 8,
the “height” of the jobs on the first machine. Note that this is not the optimal
solution; had the jobs arrived in a different order, so that the algorithm saw
the sequence of sizes 6, 4, 3, 2, 2, 2, then it would have produced an allocation
with a makespan of 7.

Analyzing the Algorithm
Let T denote the makespan of the resulting assignment; we want to show that
T is not much larger than the minimum possible makespan T∗. Of course,
in trying to do this, we immediately encounter the basic problem mentioned
above: We need to compare our solution to the optimal value T∗, even though
we don’t know what this value is and have no hope of computing it. For the

6

2

2
2

3
4

M1 M2 M3

Figure 11.1 The result of running the greedy load balancing algorithm on three
machines with job sizes 2, 3, 4, 6, 2, 2.

Example: jobs with times 2, 3, 4, 6, 2, 2 arrive
in order

for i = 1 to m do Ti = 0, Ai = ∅
for j = 1 to n do

Choose i s.t. Ti is minimum
Ti = Ti + tj

Ai = Ai ∪ {j}

Complexity? O(n log m) with priority queue



Clicker

Suppose the jobs with times 6, 4, 3, 2, 2, 2 arrive in the order listed, and are scheduled
on three machines by the simple algorithm. What will the final makespan be?

A. 6

B. 7

C. 8

D. 9



Analysis
Consider moment when job leading to highest load is added

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 603

Mi

The contribution of
the last job alone is
at most the optimum.

Just before adding
the last job, the load
on Mi was at most
the optimum.

Figure 11.2 Accounting for the load on machine Mi in two parts: the last job to be
added, and all the others.

had load at least Ti − tj. Thus, adding up the loads of all machines, we have�
k Tk ≥ m(Ti − tj), or equivalently,

Ti − tj ≤ 1
m

�

k

Tk.

But the value
�

k Tk is just the total load of all jobs
�

j tj (since every job is
assigned to exactly one machine), and so the quantity on the right-hand side
of this inequality is exactly our lower bound on the optimal value, from (11.1).
Thus

Ti − tj ≤ T∗.

Now we account for the remaining part of the load on Mi, which is just the
final job j. Here we simply use the other lower bound we have, (11.2), which
says that tj ≤ T∗. Adding up these two inequalities, we see that

Ti = (Ti − tj) + tj ≤ 2T∗.

Since our makespan T is equal to Ti, this is the result we want.

It is not hard to give an example in which the solution is indeed close
to a factor of 2 away from optimal. Suppose we have m machines and
n = m(m − 1) + 1 jobs. The first m(m − 1) = n − 1 jobs each require time tj = 1.
The last job is much larger; it requires time tn = m. What does our greedy
algorithm do with this sequence of jobs? It evenly balances the first n − 1 jobs,
and then has to add the giant job n to one of them; the resulting makespan is
T = 2m − 1.



Analysis

Consider moment when job leading to highest load is added; call this job j

new load = old load + tj

At that time:

▶ old load was smallest among all machines

old load <
1
m

n∑
k=1

tk ≤ T ∗

▶ Therefore
new load = old load + tj < T ∗ + T ∗ = 2T ∗

The algorithm gives a 2-approximation.



Clicker

Our lightest load algorithm immediately assigns each job received.
Considering all possible orderings of the same set of jobs, which of the following is true?

(Hint: consider jobs with times 4, 3, 3, 2 on two machines.)

A. Getting the largest job first is always best.

B. Getting the largest job last is always best.

C. None of the above



Worst Case604 Chapter 11 Approximation Algorithms

M1

The greedy
algorithm was
doing well
until the last
job arrived.

M2 M3 M4

Approximate solution
via greedy algorithm:

M1 M2 M3 M4

Optimal solution:

Figure 11.3 A bad example for the greedy balancing algorithm with m = 4.

What does the optimal solution look like in this example? It assigns the
large job to one of the machines, say, M1, and evenly spreads the remaining
jobs over the other m − 1 machines. This results in a makespan of m. Thus
the ratio between the greedy algorithm’s solution and the optimal solution is
(2m − 1)/m = 2 − 1/m, which is close to a factor of 2 when m is large.

See Figure 11.3 for a picture of this with m = 4; one has to admire the
perversity of the construction, which misleads the greedy algorithm into
perfectly balancing everything, only to mess everything up with the final giant
item.

In fact, with a little care, one can improve the analysis in (11.3) to show
that the greedy algorithm with m machines is within exactly this factor of
2 − 1/m on every instance; the example above is really as bad as possible.

Extensions: An Improved Approximation Algorithm
Now let’s think about how we might develop a better approximation
algorithm—in other words, one for which we are always guaranteed to be
within a factor strictly smaller than 2 away from the optimum. To do this, it
helps to think about the worst cases for our current approximation algorithm.
Our earlier bad example had the following flavor: We spread everything out
very evenly across the machines, and then one last, giant, unfortunate job
arrived. Intuitively, it looks like it would help to get the largest jobs arranged
nicely first, with the idea that later, small jobs can only do so much damage.
And in fact, this idea does lead to a measurable improvement.

Thus we now analyze the variant of the greedy algorithm that first sorts
the jobs in decreasing order of processing time and then proceeds as before.

Worst case is arbitrarily close to 2: with m(m − 1) jobs of time 1 followed by one of
time m, lightest load gives makespan 2m − 1, but optimal makespan is m.



Improved Algorithm: Large Jobs First

Intuition: large job coming last is worst case =⇒ sort jobs by time: t1 ≥ t2 ≥ . . . ≥ tn.
Then follow same algorithm as before (assign each job to machine with lightest load).

Observation: if n > m, then one machine must do two jobs from set t1, t2, . . . , tm+1,
so

T ∗ ≥ tm + tm+1 ≥ 2tm+1 =⇒ tm+1 ≤ T ∗/2



Largest Jobs First: Analysis
Again, consider moment when job j leading to highest load is added.

new load = old load + tj

If j ≤ m, job will be added to empty machine

new load = 0 + tj ≤ T ∗

If j > m, we have tj ≤ tm+1

old load <
1
m

n∑
k=1

tk ≤ T ∗

new load <
1
m

n∑
k=1

tk + tj ≤ T ∗ + tm+1 ≤ T ∗ + 1/2T∗ = 1.5T ∗

Algorithm is a 1.5-approximation (no load is > 1.5 x optimum)

More careful analysis can improve bound to 4/3 (tight)


