COMPSCI 311: Introduction to Algorithms

Lecture 24: More NP-Complete Problems

Dan Sheldon

University of Massachusetts Amherst

NP-Complete Problems So Far

Circuit-SAT

A
3-SAT

| Indept-Set | | Ham-Cycle |

A, 4
| Vertex-Cover | | Traveling-Salesman |

Arrows show reductions discussed in class.
We could construct a polynomial reduction between any pair.

NP-Completeness and Reductions

Careful, direction of reduction matters!

A <p B: A reduces to B (A “no harder” than B)
From arbitrary instance of A, construct instance of B
Reduction and construction is one-way

Problem instances are equivalent (both ways):
YESpy — YESp
YESg = YESa (same as Noy — Nog)

B is NP-complete means:

1. Bis in NP: can check solution in polynomial time
(“easy enough")

2. B is NP-hard: some NP-complete A reduces to B: A <p B
(“hard enough™). We also say: reduce from A.

Clicker

Which of the following graph problems are in NP?

. Length of longest simple path is < k

. Length of longest simple path is = k

A
B
C. Length of longest simple path is > k
D. Find length of longest simple path.
E

. All of the above.

Numerical problems
Subset Sum decision problem: given n items with weights w1, . .., w,, is there a subset

of items whose weight is exactly W7

MY HoBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT (JRDERS

CHOTCHKIES RESTAURAWT b’ﬁ.?nfg‘é%v‘?cﬁéﬁrg?
—— APPENZERS ~—~ | - EXACY? UM
NXED FROIT 215 HERE, THESE FRPERS ON THE KNAPSACK.)
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE 5ix OTHER
SIDE SALAD 235 TABLES T0 GET T0—
A FRST S RSSIRE, 0F (OURSE. LANT
HoT WiNGs 3.55 SOMETHING O TRAVELING SALESMAN? /

MOZZAREUA STIKS 420

SAMPLER PLATE 5.80 % 0 %;’ %
—— SANDWICHES ~~— !
RARRE TIE £ 5%

Dynamic programming: O(nW) pseudo-polynomial time algorithm (not polynomial in

input length nlog W)

Subset Sum Warmup

Does this instance have a solution?

wl
w2
w3
wa

W

1010
1001
0110
0101

1111

A. Yes
B. No

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010
10001
01001
01010
00111
00100

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010
10011
01001
01000
00111
00100

Subset Sum

Theorem. Subset sum is NP-complete.

Reduction from 3-SAT. (n variables, m clauses).

Subset Sum Reduction

($1 V —x9 V 1'3) VAN (—|l’1 V a2 V —|.’E3) AN (—|l‘1 V —xo V $3)

variable digits clause digits
ltem |1 2 3
v [1 0 0
fill1t o o0
to |0 1 0
f2 [[0 1 0
ts |0 0 1
fs |0 0 1
w1 1 1]

» Items t;, f; for each x;; correspond to truth assignment
> Weights — select exactly one
» (Numbers are base 10)

Subset Sum Reduction

(."L‘l V —xo V 1'3) VAN (—|l’1 V o V —|IL‘3) AN (‘KL‘l V —xo V :Eg)

variable digits clause digits
ltem |1 2 3|4 5 6
t7 1 0 of1 0 O
fi 1 0 0fj0 1 1
to O 1 00 1 0
fo 0 1 0|1 0 1
ts [0 0 11 0 1
fs [[0 0 1]l0 1 0
w1117 7 7

» Clause digit equal to 1 iff z; assignment satisfies C);

» Total for clause digit > 0 iff assignment satisfies C;

» Goal: all clause digits > 0. How to set W to enforce this? Total could be 1, 2, 3
for satisfied clause.

Subset Sum Reduction

(.%'1 V —x9 V :Bg) A (—|£L'1 V o V —|x3) A (—h%'l V —x9 V .1‘3)

variable digits clause digits

Item 2 5

t
f1
to
fo
t3
/3
w

RO O OO K ||+
=IO O == OO
== O OO Oo||lw
:OI—‘I—‘OOP—‘#
Wi—m OO = = O
WO = = O = Ofo

> Set all clause digits of W to 3... then add dummy items to increase total by at
most two.

Subset Sum Reduction

(.7}1 V —x9 V $3) A (—|ZL‘1 V xo V —|$3) N (—|J}1 V —x9 V $3)

Item

variable digits

2

clause digits

5

variable digits clause digits
ltem |1 2 3[4 5 6
tp 1 0 01 0 0
fi 1 0 o0]0 1 1
ta [0 1 00 1 0
fo O 1 0|1 0 1
ts 0 0 1)1 0 1
fs 0 0 10 1 0
w11 1]3 33

» Two dummy items per clause = can increase total by up to 2
» Can make total exactly 3 iff total of non-dummy items is > 0

Y1
z1
Y2
z9

Y3
z3

O O O O O O+
O OO O oo
O O O O O O||lw

OO OO Rr D

oo+~ EH+= OO

= = O O O oo

Subset Sum Reduction: Details (Review on Own)

> All weights have n + m digits

» For variable z;, create two items t;, f;

» Both have ith digit equal to 1
» All other items have zero in this digit
» ith digit of W = 1 = select exactly one of ¢;, f;

» The n + jth digit corresponds to clause C;

> If x; € Cj, set n + jth digit of ¢; = 1
> If —z; € C}, set n+ jth digit of f; =1
» Everything else 0.

» Set n + jth digit of W =3
» Consider a subset of items corresponding to a truth assignment (exactly one of ¢;, f;)
» If C; is not satisfied, then total in position n + j is 0, otherwise it is 1, 2, or 3
» Create two “dummy” items y;, z; with 1 in position n + j
» Can select dummies to yield total of 3 in position n 4 j iff C; is satisfied

Subset Sum Proof

» All numbers (including W) are polynomially long.
> If ® satisfiable,

» Select t; if x; = 1 in satisfying assignment else select f;.
> Take y;, z; as needed.

» |f subset exists with sum W

» Either t; or f; is chosen. Assign xz; accordingly.
» For each clause, at least one term must be selected, otherwise clause digit is < 3.

Graph Coloring

Def. A k-coloring of a graph G = (V, E) is a function f : V — {1,...,k} such that for
all (u,v) € B, f(u) # f(v).

Problem. Given G = (V, E) and number k, does G have a k-coloring?

Many applications

» Actually coloring maps!
» Scheduling jobs on machine with competing resources.
» Allocating variables to registers in a compiler.

Claim. 2-COLORING € P (equivalent to bipartite testing)

Theorem. 3-COLORING is NP-Complete.

3-Color: Gadget for Variables

» Reduce from 3-SAT.

3 colors: True, False, “Base”

3 special nodes in a clique T, F, B.
For each variable x;, two nodes v;q, v;1.
Edges (vio, B), (vi1, B), (vio, vi1)-

Either v;g or v;1 colored T, the other colored F'.

Reduction: Clause Gadget

For clause z; V —x; V 2,

Top node can be colored iff not all three v-nodes are F'.

Proof

» Graph is polynomial in n + m.
> If satisfying assignment

» Color B, T, F then v;; as T if ¢(x;) = 1.
» Since clauses satisfied, can color each gadget.

> |f graph 3-colorable

» One of v;p,v;1 must get T' color.
» Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?

Clicker Question

Which of the following is true?

A. If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete
B. k-coloring is NP-complete since any 3-coloring is also a k-coloring for k > 3

C. k-coloring is not NP-complete since 3-coloring is the hardest case, for & > 3 the
coloring is easier

D. k-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap
Types of hard problems:

Circuit-SAT

v Constraint satisfaction
3-SAT

Packing

Indept-Set Ham-Cycle) Graph-Coloring
Ham-Path Subset-Sum

v $ Partitioning
Vertex-Cover | Traveling-Salesman | 0-1 Knapsack

Sequencing Numerical

Covering

...any many others. See book or other sources for more examples. You can use any
known NP-complete problem to prove a new problem is NP-complete.

