COMPSCI 311: Introduction to Algorithms
Lecture 24: More NP-Complete Problems

Dan Sheldon
University of Massachusetts Amherst

NP-Complete Problems So Far

- 3-SAT
- Indep-Set
- Vertex-Cover
- Set-Cover
- Circuit-SAT
- Ham-Cycle
- Traveling-Salesman

Arrows show reductions discussed in class.
We could construct a polynomial reduction between any pair.

NP-Completeness and Reductions

Careful, direction of reduction matters!
A \leq_P B: A reduces to B (A "no harder" than B)
From arbitrary instance of A, construct instance of B
Reduction and construction is one-way

Problem instances are equivalent (both ways):
YES_A \implies YES_B
YES_B \implies YES_A (same as NO_A \implies NO_B)

B is NP-complete means:
1. B is in NP: can check solution in polynomial time
 ("easy enough")
2. B is NP-hard: some NP-complete A reduces to B: A \leq_P B
 ("hard enough"). We also say: reduce from A.

Clicker
Which of the following graph problems are in NP?

A. Length of longest simple path is \leq k
B. Length of longest simple path is = k
C. Length of longest simple path is \geq k
D. Find length of longest simple path.
E. All of the above.
Numerical problems

Subset Sum decision problem: given \(n \) items with weights \(w_1, \ldots, w_n \), is there a subset of items whose weight is exactly \(W \)?

Dynamic programming: \(O(nW) \) pseudo-polynomial time algorithm (not polynomial in input length \(n \log W \))

Subset Sum Warmup

Does this instance have a solution?

\[
\begin{array}{c}
1010 \\
1001 \\
0101 \\
00111 \\
00100 \\
---- \\
1111
\end{array}
\]

A. Yes
B. No

For which nonzero values of \(y \) does this instance have a solution?

\[
\begin{array}{c}
10010 \\
10001 \\
01001 \\
01010 \\
00111 \\
00100 \\
---- \\
1113y
\end{array}
\]

A. \(y = 1 \)
B. \(y = 1, 2 \)
C. \(y = 1, 2, 3 \)
Subset Sum

Theorem. Subset sum is NP-complete.
Reduction from 3-SAT. (n variables, m clauses).

Subset Sum Reduction

\[(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)\]

<table>
<thead>
<tr>
<th>Item</th>
<th>variable digits</th>
<th>clause digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>1 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>(f_1)</td>
<td>1 0 0</td>
<td>0 1 1</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0 1 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>(f_3)</td>
<td>0 0 1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>(W)</td>
<td>1 1 1</td>
<td>? ? ?</td>
</tr>
</tbody>
</table>

▶ Clause digit equal to 1 iff \(x_i\) assignment satisfies \(C_j\)
▶ Total for clause digit > 0 iff assignment satisfies \(C_j\)
▶ Goal: all clause digits > 0. How to set \(W\) to enforce this? Total could be 1, 2, 3 for satisfied clause.

Subset Sum Reduction

\[(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)\]

<table>
<thead>
<tr>
<th>Item</th>
<th>variable digits</th>
<th>clause digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>1 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>(f_1)</td>
<td>1 0 0</td>
<td>0 1 1</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0 1 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>(f_3)</td>
<td>0 0 1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>(W)</td>
<td>1 1 1</td>
<td>3 3 3</td>
</tr>
</tbody>
</table>

▶ Set all clause digits of \(W\) to 3... then add dummy items to increase total by at most two.
Subset Sum Reduction

\[(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)\]

<table>
<thead>
<tr>
<th>Item</th>
<th>variable digits</th>
<th>clause digits</th>
<th>Item</th>
<th>variable digits</th>
<th>clause digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>(y_1)</td>
<td>0 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>(t_1)</td>
<td>1 0 0</td>
<td>0 1 1</td>
<td>(z_1)</td>
<td>0 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0 1 0</td>
<td>0 1 0</td>
<td>(y_2)</td>
<td>0 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0 1 0</td>
<td>1 0 1</td>
<td>(z_2)</td>
<td>0 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0 0 1</td>
<td>1 0 1</td>
<td>(y_3)</td>
<td>0 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0 0 1</td>
<td>0 1 0</td>
<td>(z_3)</td>
<td>0 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>(W)</td>
<td>1 1 1</td>
<td>3 3 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two dummy items per clause ⇒ can increase total by up to 2
Can make total exactly 3 iff total of non-dummy items is > 0

Subset Sum Reduction: Details (Review on Own)

- All weights have \(n + m\) digits
- For variable \(x_i\), create two items \(t_i, f_i\)
 - Both have \(i\)th digit equal to 1
 - All other items have zero in this digit
 - \(i\)th digit of \(W = 1\) ⇒ select exactly one of \(t_i, f_i\)
- The \(n + j\)th digit corresponds to clause \(C_j\)
 - If \(x_i \in C_j\), set \(n + j\)th digit of \(t_i = 1\)
 - If \(\neg x_i \in C_j\), set \(n + j\)th digit of \(f_i = 1\)
 - Everything else 0.

Subset Sum Proof

- All numbers (including \(W\)) are polynomially long.
- If \(\Phi\) satisfiable,
 - Select \(t_i\) if \(x_i = 1\) in satisfying assignment else select \(f_i\).
 - Take \(y_j, z_j\) as needed.
- If subset exists with sum \(W\)
 - Either \(t_i\) or \(f_i\) is chosen. Assign \(x_i\) accordingly.
 - For each clause, at least one term must be selected, otherwise clause digit is < 3.
Graph Coloring

Def. A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, \ldots, k\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.

Problem. Given $G = (V, E)$ and number k, does G have a k-coloring?

Many applications
- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.

Claim. 2-coloring $\in P$ (equivalent to bipartite testing)

Theorem. 3-coloring is NP-Complete.

Reduction: Clause Gadget

For clause $x_i \lor \neg x_j \lor x_k$

Top node can be colored iff not all three v-nodes are F.

3-Color: Gadget for Variables

- Reduce from 3-SAT.

3 colors: True, False, “Base”
3 special nodes in a clique T,F,B.
For each variable x_i, two nodes v_{i0}, v_{i1}.
Edges $(v_{i0}, B), (v_{i1}, B), (v_{i0}, v_{i1})$.
Either v_{i0} or v_{i1} colored T, the other colored F.

Proof

- Graph is polynomial in $n + m$.
- If satisfying assignment
 - Color B,T,F then v_{i1} as T if $\phi(x_i) = 1$.
 - Since clauses satisfied, can color each gadget.
- If graph 3-colorable
 - One of v_{i0}, v_{i1} must get T color.
 - Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?
Clicker Question

Which of the following is true?

A. If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete
B. k-coloring is NP-complete since any 3-coloring is also a k-coloring for $k \geq 3$
C. k-coloring is not NP-complete since 3-coloring is the hardest case, for $k > 3$ the coloring is easier
D. k-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap

Types of hard problems:

- 3-SAT
- Indep-Set
- Vertex-Cover
- Set-Cover
- Circuit-SAT
- Ham-Cycle
- Ham-Path
- Traveling-Salesman
- Subset-Sum
- 0-1 Knapsack
- Graph-Coloring
- Constraint satisfaction
- Partitioning
- Sequencing
- Numerical
- Covering

...any many others. See book or other sources for more examples. You can use any known NP-complete problem to prove a new problem is NP-complete.