NP-Completeness and Reductions

Careful, direction of reduction matters!

A \leq_P B: A reduces to B (A "no harder" than B)

From arbitrary instance of A, construct instance of B

Reduction and construction is one-way

Problem instances are equivalent (both ways):

Yes_A \implies Yes_B

Yes_B \implies Yes_A (same as No_A \implies No_B)

B is NP-complete means:

1. B is in NP: can check solution in polynomial time
 ("easy enough")
2. B is NP-hard: some NP-complete A reduces to B: A \leq_P B
 ("hard enough"). We also say: reduce from A.

Clicker

Which of the following graph problems are in NP?

A. Length of longest simple path is \leq k
B. Length of longest simple path is = k
C. Length of longest simple path is \geq k
D. Find length of longest simple path.
E. All of the above.
Numerical problems

Subset Sum decision problem: given \(n \) items with weights \(w_1, \ldots, w_n \), is there a subset of items whose weight is exactly \(W \)?

Dynamic programming: \(O(nW) \) pseudo-polynomial time algorithm (not polynomial in input length \(n \log W \))

Subset Sum Warmup

Does this instance have a solution?

\[
\begin{array}{c}
w_1 \quad 1010 \\
w_2 \quad 1001 \\
w_3 \quad 0110 \\
w_4 \quad 0101 \\
W \quad 1111 \\
\end{array}
\]

A. Yes
B. No

Subset Sum Warmup

For which nonzero values of \(y \) does this instance have a solution?

\[
\begin{array}{c}
10010 \\
10001 \\
01001 \\
01010 \\
00111 \\
00100 \\
1113y \\
\end{array}
\]

A. \(y = 1 \)
B. \(y = 1, 2 \)
C. \(y = 1, 2, 3 \)

Subset Sum Warmup

For which nonzero values of \(y \) does this instance have a solution?

\[
\begin{array}{c}
10010 \\
10011 \\
01001 \\
01000 \\
00111 \\
00100 \\
1112y \\
\end{array}
\]

A. \(y = 1 \)
B. \(y = 1, 2 \)
C. \(y = 1, 2, 3 \)
Theorem. Subset sum is NP-complete.
Reduction from 3-SAT. (n variables, m clauses).

\[(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)\]

\[\begin{array}{cccc}
\text{Item} & 1 & 2 & 3 \\
\hline
\text{t}_1 & 1 & 0 & 0 \\
\text{f}_1 & 1 & 0 & 0 \\
\text{t}_2 & 0 & 1 & 0 \\
\text{f}_2 & 0 & 1 & 0 \\
\text{t}_3 & 0 & 0 & 1 \\
\text{f}_3 & 0 & 0 & 1 \\
\text{W} & 1 & 1 & 1 \\
\end{array}\]

- Items \(t_i, f_i\) for each \(x_i\); correspond to truth assignment
- Weights \(\Rightarrow\) select exactly one
- (Numbers are base 10)

\[\text{Subset Sum Reduction}\]

\[\begin{array}{c}
\text{Clause digit equal to 1 iff } x_i \text{ assignment satisfies } C_j \\
\text{Total for clause digit } > 0 \text{ iff assignment satisfies } C_j \\
\text{Goal: all clause digits } > 0. \text{ How to set } W \text{ to enforce this? Total could be 1, 2, 3 for satisfied clause.}
\end{array}\]

\[\begin{array}{c}
\text{Set all clause digits of } W \text{ to 3... then add dummy items to increase total by at most two.}
\end{array}\]
Subset Sum Reduction

\[(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)\]

<table>
<thead>
<tr>
<th>Item</th>
<th>Variable digits</th>
<th>Clause digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>f_1</td>
<td>1 0 0</td>
<td>0 1 1</td>
</tr>
<tr>
<td>t_2</td>
<td>0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>f_2</td>
<td>0 1 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>t_3</td>
<td>0 0 1</td>
<td>0 0 1</td>
</tr>
<tr>
<td>f_3</td>
<td>0 0 1</td>
<td>0 0 1</td>
</tr>
<tr>
<td>W</td>
<td>1 1 1</td>
<td>3 3 3</td>
</tr>
</tbody>
</table>

- Two dummy items per clause ⇒ can increase total by up to 2
- Can make total exactly 3 iff total of non-dummy items is > 0

Subset Sum Proof

- All numbers (including W) are polynomially long.
- If \(\Phi \) satisfiable,
 - Select \(t_i \) if \(x_i = 1 \) in satisfying assignment else select \(f_i \).
 - Take \(y_j, z_j \) as needed.
- If subset exists with sum W
 - Either \(t_i \) or \(f_i \) is chosen. Assign \(x_i \) accordingly.
 - For each clause, at least one term must be selected, otherwise clause digit is < 3.

- All weights have \(n + m \) digits
- For variable \(x_i \), create two items \(t_i, f_i \)
 - Both have \(i \)th digit equal to 1
 - All other items have zero in this digit
 - \(i \)th digit of \(W = 1 \) ⇒ select exactly one of \(t_i, f_i \)
- The \(n + j \)th digit corresponds to clause \(C_j \)
 - If \(x_i \in C_j \), set \(n + j \)th digit of \(t_i = 1 \)
 - If \(\neg x_i \in C_j \), set \(n + j \)th digit of \(f_i = 1 \)
 - Everything else 0.

- Set \(n + j \)th digit of \(W = 3 \)
 - Consider a subset of items corresponding to a truth assignment (exactly one of \(t_i, f_i \))
 - If \(C_j \) is not satisfied, then total in position \(n + j \) is 0, otherwise it is 1, 2, or 3
 - Create two “dummy” items \(y_j, z_j \) with 1 in position \(n + j \)
 - Can select dummies to yield total of 3 in position \(n + j \) if \(C_j \) is satisfied
Graph Coloring

Def. A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, \ldots, k\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.

Problem. Given $G = (V, E)$ and number k, does G have a k-coloring?

Many applications

- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.

Claim. 2-COLORING \in P (equivalent to bipartite testing)

Theorem. 3-COLORING is NP-Complete.

3-Color: Gadget for Variables

- Reduce from 3-SAT.

3 colors: True, False, “Base”

3 special nodes in a clique $T, F, Base$.

For each variable x_i, two nodes v_i0, v_i1.

Edges $(v_i0, t), (v_i1, t), (v_i0, v_i1)$.

Either v_i0 or v_i1 colored T, the other colored F.

Reduction: Clause Gadget

For clause $x_i \lor \neg x_j \lor x_k$

Top node can be colored iff not all three v-nodes are F.

Proof

- Graph is polynomial in $n + m$.
- If satisfying assignment
 - Color B, T, F then v_i as T if $\phi(x_i) = 1$.
 - Since clauses satisfied, can color each gadget.
- If graph 3-colorable
 - One of v_{i0}, v_{i1} must get T color.
 - Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?
Clicker Question

Which of the following is true?

A. If we can reduce 3-coloring to \(k \)-coloring, then \(k \)-coloring is NP-complete
B. \(k \)-coloring is NP-complete since any 3-coloring is also a \(k \)-coloring for \(k \geq 3 \)
C. \(k \)-coloring is not NP-complete since 3-coloring is the hardest case, for \(k > 3 \) the coloring is easier
D. \(k \)-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap

Types of hard problems:

... any many others. See book or other sources for more examples. You can use any known NP-complete problem to prove a new problem is NP-complete.