
COMPSCI 311: Introduction to Algorithms
Lecture 24: More NP-Complete Problems

Dan Sheldon

University of Massachusetts Amherst



NP-Complete Problems So Far

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle

Traveling-Salesman

Arrows show reductions discussed in class.
We could construct a polynomial reduction between any pair.



NP-Completeness and Reductions

Careful, direction of reduction matters!

A ≤P B: A reduces to B (A “no harder” than B)
From arbitrary instance of A, construct instance of B
Reduction and construction is one-way

Problem instances are equivalent (both ways):
YesA =⇒ YesB
YesB =⇒ YesA (same as NoA =⇒ NoB)

B is NP-complete means:

1. B is in NP: can check solution in polynomial time
(“easy enough”)

2. B is NP-hard: some NP-complete A reduces to B: A ≤P B
(“hard enough”). We also say: reduce from A.



Clicker

Which of the following graph problems are in NP?

A. Length of longest simple path is ≤ k

B. Length of longest simple path is = k

C. Length of longest simple path is ≥ k

D. Find length of longest simple path.

E. All of the above.



Numerical problems

Subset Sum decision problem: given n items with weights w1, . . . , wn, is there a subset
of items whose weight is exactly W?

Dynamic programming: O(nW ) pseudo-polynomial time algorithm (not polynomial in
input length n log W )



Subset Sum Warmup

Does this instance have a solution?

w1 1010
w2 1001
w3 0110
w4 0101

----
W 1111

A. Yes
B. No



Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010
10001
01001
01010
00111
00100
-----
1113y

A. y = 1
B. y = 1, 2
C. y = 1, 2, 3



Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010
10011
01001
01000
00111
00100
-----
1112y

A. y = 1
B. y = 1, 2
C. y = 1, 2, 3



Subset Sum

Theorem. Subset sum is NP-complete.

Reduction from 3-SAT. (n variables, m clauses).



Subset Sum Reduction
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

variable digits clause digits

Item 1 2 3
t1 1 0 0
f1 1 0 0
t2 0 1 0
f2 0 1 0
t3 0 0 1
f3 0 0 1
W 1 1 1

▶ Items ti, fi for each xi; correspond to truth assignment
▶ Weights =⇒ select exactly one
▶ (Numbers are base 10)



Subset Sum Reduction
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

variable digits clause digits

Item 1 2 3 4 5 6
t1 1 0 0 1 0 0
f1 1 0 0 0 1 1
t2 0 1 0 0 1 0
f2 0 1 0 1 0 1
t3 0 0 1 1 0 1
f3 0 0 1 0 1 0
W 1 1 1 ? ? ?

▶ Clause digit equal to 1 iff xi assignment satisfies Cj

▶ Total for clause digit > 0 iff assignment satisfies Cj

▶ Goal: all clause digits > 0. How to set W to enforce this? Total could be 1, 2, 3
for satisfied clause.



Subset Sum Reduction

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

variable digits clause digits

Item 1 2 3 4 5 6
t1 1 0 0 1 0 0
f1 1 0 0 0 1 1
t2 0 1 0 0 1 0
f2 0 1 0 1 0 1
t3 0 0 1 1 0 1
f3 0 0 1 0 1 0
W 1 1 1 3 3 3

▶ Set all clause digits of W to 3. . . then add dummy items to increase total by at
most two.



Subset Sum Reduction

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

variable digits clause digits

Item 1 2 3 4 5 6
t1 1 0 0 1 0 0
f1 1 0 0 0 1 1
t2 0 1 0 0 1 0
f2 0 1 0 1 0 1
t3 0 0 1 1 0 1
f3 0 0 1 0 1 0
W 1 1 1 3 3 3

variable digits clause digits

Item 1 2 3 4 5 6
y1 0 0 0 1 0 0
z1 0 0 0 1 0 0
y2 0 0 0 0 1 0
z2 0 0 0 0 1 0
y3 0 0 0 0 0 1
z3 0 0 0 0 0 1

▶ Two dummy items per clause ⇒ can increase total by up to 2
▶ Can make total exactly 3 iff total of non-dummy items is > 0



Subset Sum Reduction: Details (Review on Own)

▶ All weights have n + m digits

▶ For variable xi, create two items ti, fi

▶ Both have ith digit equal to 1
▶ All other items have zero in this digit
▶ ith digit of W = 1 ⇒ select exactly one of ti, fi

▶ The n + jth digit corresponds to clause Cj

▶ If xi ∈ Cj , set n + jth digit of ti = 1
▶ If ¬xi ∈ Cj , set n + jth digit of fi = 1
▶ Everything else 0.



▶ Set n + jth digit of W = 3
▶ Consider a subset of items corresponding to a truth assignment (exactly one of ti, fi)
▶ If Cj is not satisfied, then total in position n + j is 0, otherwise it is 1, 2, or 3
▶ Create two “dummy” items yj , zj with 1 in position n + j
▶ Can select dummies to yield total of 3 in position n + j iff Cj is satisfied



Subset Sum Proof

▶ All numbers (including W ) are polynomially long.

▶ If Φ satisfiable,
▶ Select ti if xi = 1 in satisfying assignment else select fi.
▶ Take yj , zj as needed.

▶ If subset exists with sum W

▶ Either ti or fi is chosen. Assign xi accordingly.
▶ For each clause, at least one term must be selected, otherwise clause digit is < 3.



Graph Coloring

Def. A k-coloring of a graph G = (V, E) is a function f : V → {1, . . . , k} such that for
all (u, v) ∈ E, f(u) ̸= f(v).

Problem. Given G = (V, E) and number k, does G have a k-coloring?

Many applications

▶ Actually coloring maps!
▶ Scheduling jobs on machine with competing resources.
▶ Allocating variables to registers in a compiler.

Claim. 2-coloring ∈ P (equivalent to bipartite testing)

Theorem. 3-coloring is NP-Complete.



3-Color: Gadget for Variables

▶ Reduce from 3-SAT.

3 colors: True, False, “Base”

3 special nodes in a clique T, F, B.
For each variable xi, two nodes vi0, vi1.
Edges (vi0, B), (vi1, B), (vi0, vi1).

Either vi0 or vi1 colored T , the other colored F .

488 Chapter 8 NP and Computational Intractability

v3

False

v1

True

v2

v3v1

v2

BaseB

FT

– –

–

Figure 8.11 The beginning of the reduction for 3-Coloring.

G we have defined thus far is pictured in Figure 8.11, and it already has some
useful properties.

. In any 3-coloring of G, the nodes vi and vi must get different colors, and
both must be different from Base.

. In any 3-coloring of G, the nodes True, False, and Base must get all three
colors in some permutation. Thus we can refer to the three colors as the
True color, the False color, and the Base color, based on which of these
three nodes gets which color. In particular, this means that for each i,
one of vi or vi gets the True color, and the other gets the False color. For
the remainder of the construction, we will consider the variable xi to
be set to 1 in the given instance of 3-SAT if and only if the node vi gets
assigned the True color.

So in summary, we now have a graph G in which any 3-coloring implicitly
determines a truth assignment for the variables in the 3-SAT instance. We
now need to grow G so that only satisfying assignments can be extended to
3-colorings of the full graph. How should we do this?

As in other 3-SAT reductions, let’s consider a clause like x1 ∨ x2 ∨ x3. In
the language of 3-colorings of G, it says, “At least one of the nodes v1, v2, or
v3 should get the True color.” So what we need is a little subgraph that we can
plug into G, so that any 3-coloring that extends into this subgraph must have
the property of assigning the True color to at least one of v1, v2, or v3. It takes
some experimentation to find such a subgraph, but one that works is depicted
in Figure 8.12.



Reduction: Clause Gadget

For clause xi ∨ ¬xj ∨ xk

vj0

vi1 T vk1 F

Top node can be colored iff not all three v-nodes are F .



Proof

▶ Graph is polynomial in n + m.

▶ If satisfying assignment
▶ Color B, T, F then vi1 as T if ϕ(xi) = 1.
▶ Since clauses satisfied, can color each gadget.

▶ If graph 3-colorable
▶ One of vi0, vi1 must get T color.
▶ Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?



Clicker Question

Which of the following is true?

A. If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete

B. k-coloring is NP-complete since any 3-coloring is also a k-coloring for k ≥ 3

C. k-coloring is not NP-complete since 3-coloring is the hardest case, for k > 3 the
coloring is easier

D. k-coloring is not NP-complete because the 4-color theorem has been proved



NP-Completeness Recap
Types of hard problems:

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle
Ham-Path

Traveling-Salesman

Subset-Sum

0-1 Knapsack

Graph-Coloring

Constraint satisfaction

Partitioning

NumericalSequencing

Packing

Covering

. . . any many others. See book or other sources for more examples. You can use any
known NP-complete problem to prove a new problem is NP-complete.


