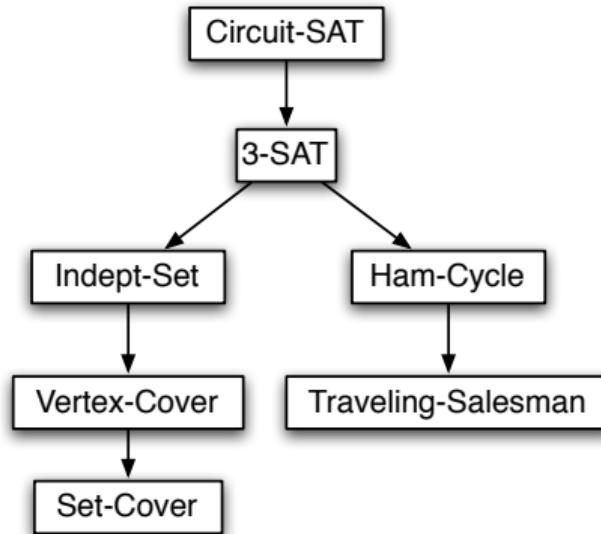


NP-Complete Problems So Far



Arrows show reductions discussed in class.

We could construct a polynomial reduction between any pair.

NP-Completeness and Reductions

Careful, direction of reduction matters!

$A \leq_P B$: A reduces **to** B (A “no harder” than B)

From arbitrary instance of A, construct instance of B

Reduction and construction is **one-way**

Problem instances are **equivalent (both ways)**:

$\text{YES}_A \implies \text{YES}_B$

$\text{YES}_B \implies \text{YES}_A$ (same as $\text{NO}_A \implies \text{NO}_B$)

B is NP-complete means:

1. B is in NP: can **check** solution in polynomial time (“easy enough”)
2. B is NP-hard: some NP-complete A reduces **to** B: $A \leq_P B$ (“hard enough”). We also say: reduce **from** A.

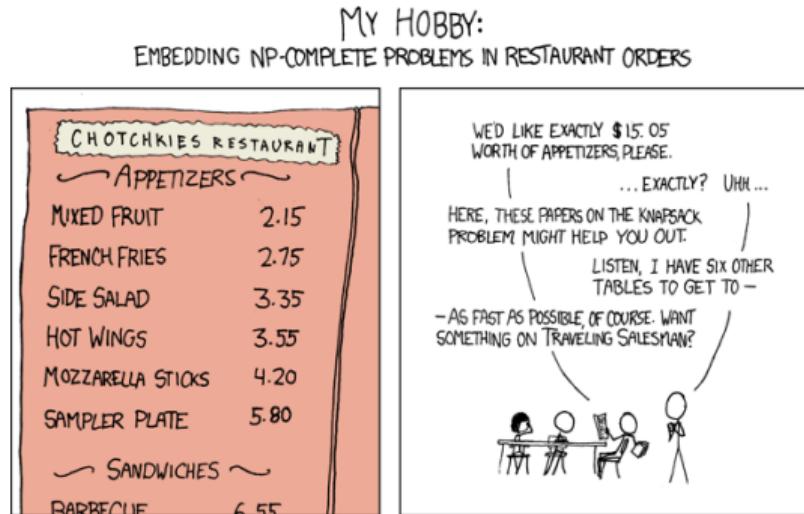
Clicker

Which of the following graph problems are in NP?

- A. Length of longest simple path is $\leq k$
- B. Length of longest simple path is $= k$
- C. Length of longest simple path is $\geq k$
- D. Find length of longest simple path.
- E. All of the above.

Numerical problems

Subset Sum decision problem: given n items with weights w_1, \dots, w_n , is there a subset of items whose weight is exactly W ?



Dynamic programming: $O(nW)$ *pseudo-polynomial* time algorithm (not polynomial in input length $n \log W$)

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010

10001

01001

01010

00111

00100

1113y

- A. $y = 1$
- B. $y = 1, 2$
- C. $y = 1, 2, 3$

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010

10011

01001

01000

00111

00100

1112y

- A. $y = 1$
- B. $y = 1, 2$
- C. $y = 1, 2, 3$

Subset Sum

Theorem. Subset sum is NP-complete.

Reduction from 3-SAT. (n variables, m clauses).

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

Item	variable digits			clause digits
	1	2	3	
t_1	1	0	0	
f_1	1	0	0	
t_2	0	1	0	
f_2	0	1	0	
t_3	0	0	1	
f_3	0	0	1	
W	1	1	1	

- ▶ Items t_i, f_i for each x_i ; correspond to truth assignment
- ▶ Weights \implies select exactly one
- ▶ (Numbers are base 10)

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

Item	variable digits			clause digits		
	1	2	3	4	5	6
t_1	1	0	0	1	0	0
f_1	1	0	0	0	1	1
t_2	0	1	0	0	1	0
f_2	0	1	0	1	0	1
t_3	0	0	1	1	0	1
f_3	0	0	1	0	1	0
W	1	1	1	?	?	?

- ▶ Clause digit equal to 1 iff x_i assignment satisfies C_j
- ▶ Total for clause digit > 0 iff assignment satisfies C_j
- ▶ Goal: all clause digits > 0 . How to set W to enforce this? Total could be 1, 2, 3 for satisfied clause.

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

Item	variable digits			clause digits		
	1	2	3	4	5	6
t_1	1	0	0	1	0	0
f_1	1	0	0	0	1	1
t_2	0	1	0	0	1	0
f_2	0	1	0	1	0	1
t_3	0	0	1	1	0	1
f_3	0	0	1	0	1	0
W	1	1	1	3	3	3

- ▶ Set all clause digits of W to 3... then add dummy items to increase total by **at most two**.

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

Item	variable digits			clause digits		
	1	2	3	4	5	6
t_1	1	0	0	1	0	0
f_1	1	0	0	0	1	1
t_2	0	1	0	0	1	0
f_2	0	1	0	1	0	1
t_3	0	0	1	1	0	1
f_3	0	0	1	0	1	0
W	1	1	1	3	3	3

Item	variable digits			clause digits		
	1	2	3	4	5	6
y_1	0	0	0	1	0	0
z_1	0	0	0	1	0	0
y_2	0	0	0	0	1	0
z_2	0	0	0	0	1	0
y_3	0	0	0	0	0	1
z_3	0	0	0	0	0	1

- ▶ **Two** dummy items per clause \Rightarrow can increase total by up to 2
- ▶ Can make total exactly 3 iff total of non-dummy items is > 0

Subset Sum Reduction: Details (Review on Own)

- ▶ All weights have $n + m$ digits
- ▶ For variable x_i , create two items t_i, f_i
 - ▶ Both have i th digit equal to 1
 - ▶ All other items have zero in this digit
 - ▶ i th digit of $W = 1 \Rightarrow$ select exactly one of t_i, f_i
- ▶ The $n + j$ th digit corresponds to clause C_j
 - ▶ If $x_i \in C_j$, set $n + j$ th digit of $t_i = 1$
 - ▶ If $\neg x_i \in C_j$, set $n + j$ th digit of $f_i = 1$
 - ▶ Everything else 0.

- ▶ Set $n + j$ th digit of $W = 3$
 - ▶ Consider a subset of items corresponding to a truth assignment (exactly one of t_i, f_i)
 - ▶ If C_j is not satisfied, then total in position $n + j$ is 0, otherwise it is 1, 2, or 3
 - ▶ Create two “dummy” items y_j, z_j with 1 in position $n + j$
 - ▶ Can select dummies to yield total of 3 in position $n + j$ iff C_j is satisfied

Subset Sum Proof

- ▶ All numbers (including W) are polynomially long.
- ▶ If Φ satisfiable,
 - ▶ Select t_i if $x_i = 1$ in satisfying assignment else select f_i .
 - ▶ Take y_j, z_j as needed.
- ▶ If subset exists with sum W
 - ▶ Either t_i or f_i is chosen. Assign x_i accordingly.
 - ▶ For each clause, at least one term must be selected, otherwise clause digit is < 3 .

Graph Coloring

Def. A k -coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, \dots, k\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.

Problem. Given $G = (V, E)$ and number k , does G have a k -coloring?

Many applications

- ▶ Actually coloring maps!
- ▶ Scheduling jobs on machine with competing resources.
- ▶ Allocating variables to registers in a compiler.

Claim. 2-COLORING $\in P$ (equivalent to bipartite testing)

Theorem. 3-COLORING is NP-Complete.

3-Color: Gadget for Variables

- ▶ Reduce from 3-SAT.

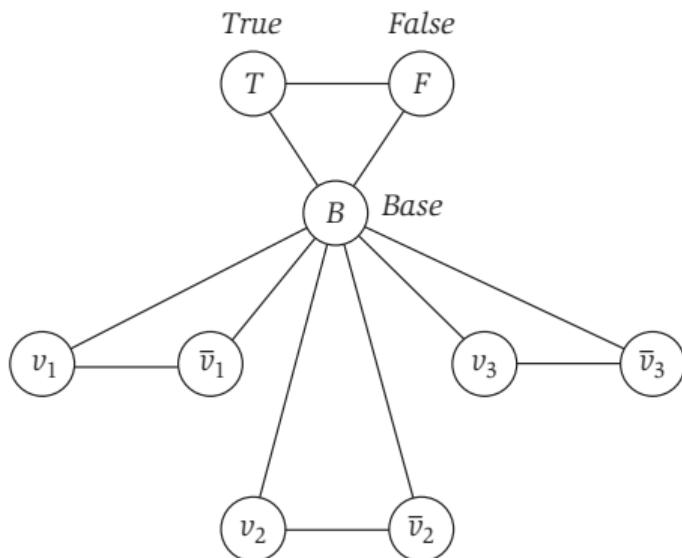
3 colors: True, False, “Base”

3 special nodes in a clique T, F, B .

For each variable x_i , two nodes v_{i0}, v_{i1} .

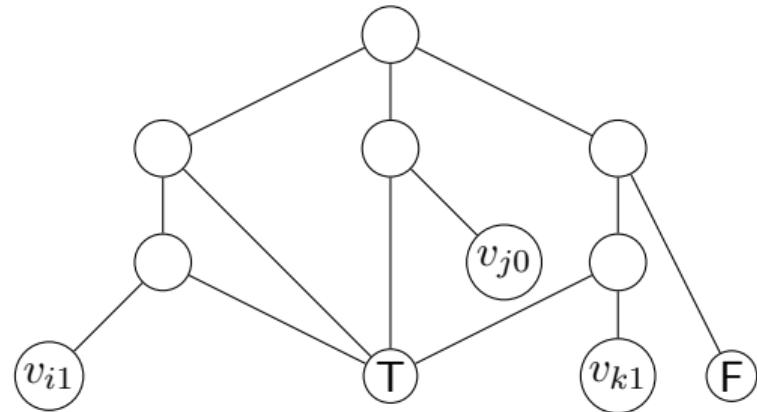
Edges $(v_{i0}, B), (v_{i1}, B), (v_{i0}, v_{i1})$.

Either v_{i0} or v_{i1} colored T , the other colored F .



Reduction: Clause Gadget

For clause $x_i \vee \neg x_j \vee x_k$



Top node can be colored iff not all three v -nodes are F .

Proof

- ▶ Graph is polynomial in $n + m$.
- ▶ If satisfying assignment
 - ▶ Color B, T, F then v_{i1} as T if $\phi(x_i) = 1$.
 - ▶ Since clauses satisfied, can color each gadget.
- ▶ If graph 3-colorable
 - ▶ One of v_{i0}, v_{i1} must get T color.
 - ▶ Clause gadget colorable iff clause satisfied.

Question. What about k -coloring?

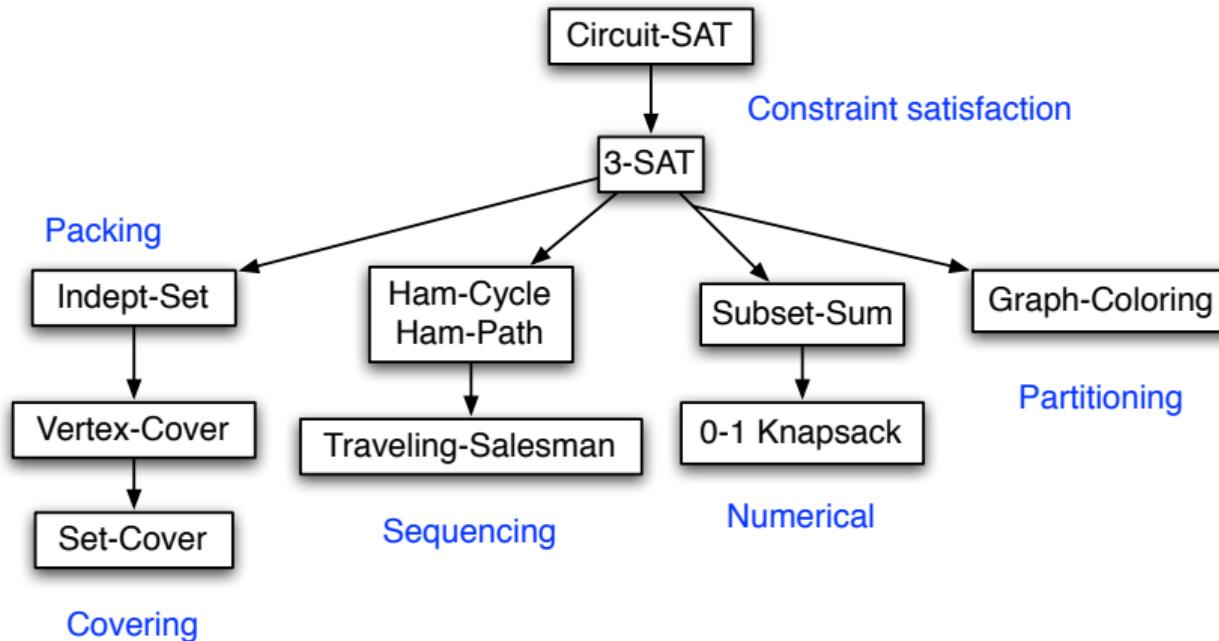
Clicker Question

Which of the following is true?

- A. If we can reduce 3-coloring to k -coloring, then k -coloring is NP-complete
- B. k -coloring is NP-complete since any 3-coloring is also a k -coloring for $k \geq 3$
- C. k -coloring is not NP-complete since 3-coloring is the hardest case, for $k > 3$ the coloring is easier
- D. k -coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap

Types of hard problems:



... any many others. See book or other sources for more examples. You can use *any known NP-complete* problem to prove a new problem is NP-complete.