NP-Completeness and Reductions

Careful, direction of reduction matters!

A \leq_P B: A reduces to B (A "no harder" than B) From arbitrary instance of A, construct instance of B
Reduction and construction is one-way

Problem instances are equivalent (both ways): \text{YES}_A \implies \text{YES}_B
\text{YES}_B \implies \text{YES}_A \text{ (same as } \text{NO}_A \implies \text{NO}_B\text{)}

B is NP-complete means:
1. B is in NP: can check solution in polynomial time ("easy enough")
2. B is NP-hard: some NP-complete A reduces to B: A \leq_P B ("hard enough")
 we also say: reduce from A

Clicker Question

Which of the following graph problems are in NP?

A. Length of longest simple path is \leq k
B. Length of longest simple path is = k
C. Length of longest simple path is \geq k
D. Find length of longest simple path.
E. All of the above.

Subset Sum Warmup

Does this instance have a solution?

\begin{tabular}{l l}
 w1 & 1010 \\
 w2 & 1001 \\
 w3 & 0110 \\
 w4 & 0101 \\
 ---- & ---- \\
 W & 1111 \\
\end{tabular}

Dynamic programming: \text{O}(nW) pseudo-polynomial time algorithm (not polynomial in input length n \log W)
Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

\[
\begin{array}{cccc}
10010 \\
10001 \\
01001 \\
01010 \\
00111 \\
00100 \\
\hline
1113y
\end{array}
\]

A. $y = 1$
B. $y = 1, 2$
C. $y = 1, 2, 3$

\[
\begin{array}{cccc}
10010 \\
10001 \\
01001 \\
01010 \\
00111 \\
00100 \\
\hline
1112y
\end{array}
\]

A. $y = 1$
B. $y = 1, 2$
C. $y = 1, 2, 3$

\[
\begin{array}{cccc}
10010 \\
10001 \\
01001 \\
01010 \\
00111 \\
00100 \\
\hline
1111y
\end{array}
\]

A. $y = 1$
B. $y = 1, 2$
C. $y = 1, 2, 3$

Subset Sum

Theorem. Subset sum is NP-complete.

Reduction from 3-SAT. (n variables, m clauses, base 10).

\[
(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)
\]

<table>
<thead>
<tr>
<th>Item</th>
<th>variable digits</th>
<th>clause digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>f_1</td>
<td>1 0 0</td>
<td>1 0</td>
</tr>
<tr>
<td>t_2</td>
<td>0 1 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>f_2</td>
<td>0 1 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>t_3</td>
<td>0 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>f_3</td>
<td>0 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>W</td>
<td>1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

- Items t_i, f_i for each x_i; correspond to truth assignment
- Weights \implies select exactly one
- (Numbers are base 10)

Subset Sum Reduction

\[
(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)
\]

<table>
<thead>
<tr>
<th>Item</th>
<th>variable digits</th>
<th>clause digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>f_1</td>
<td>1 0 0</td>
<td>0 1 1</td>
</tr>
<tr>
<td>t_2</td>
<td>0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>f_2</td>
<td>0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>t_3</td>
<td>0 0 1</td>
<td>0 1 1</td>
</tr>
<tr>
<td>f_3</td>
<td>0 0 1</td>
<td>0 1 1</td>
</tr>
<tr>
<td>W</td>
<td>1 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Clause digit equal to 1 if x_i assignment satisfies C_j
- Total for clause digit > 0 if assignment satisfies C_j
- Goal: all clause digits > 0. How to set W to enforce this?
 - Total could be 1, 2, 3 for satisfied clause.
Theorem. \textsc{SubsetSum} is NP-Complete.

\begin{itemize}
 \item But reducing \textsc{from Subset Sum} can be tricky!
 \end{itemize}

\begin{itemize}
 \item If reducing \textsc{SubsetSum} \leq_P X, reduction needs to be polynomial in \log(W) (number of digits).
 \end{itemize}

\textbf{Warning}

For variable \(x_i \), create two items \(t_i, f_i \)
\begin{itemize}
 \item Both have \(i \)th digit equal to 1
 \item All other items have zero in this digit
 \item \(i \)th digit of \(W = 1 \) \(\Rightarrow \) select exactly one of \(t_i, f_i \)
\end{itemize}

The \(n + j \)th digit corresponds to clause \(C_j \)
\begin{itemize}
 \item If \(x_i \in C_j \), set \(n + j \)th digit of \(t_i = 1 \)
 \item If \(\neg x_i \in C_j \), set \(n + j \)th digit of \(f_i = 1 \)
 \item Everything else 0.
\end{itemize}

\begin{itemize}
 \item Set \(n + j \)th digit of \(W = 3 \)
 \item Consider a subset of items corresponding to a truth assignment (exactly one of \(t_i, f_i \))
 \item If \(C_j \) is not satisfied, then total in position \(n + j \) is 0, otherwise it is 1, 2, or 3
 \item Create two "dummy" items \(y_j, z_j \) with 1 in position \(n + j \)
 \item Can select dummies to yield total of 3 in position \(n + j \) iff \(C_j \) is satisfied
\end{itemize}
Graph Coloring

Def. A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, \ldots, k\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.

Problem. Given $G = (V, E)$ and number k, does G have a k-coloring?

Many applications
- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.

Claim. 2-COLORING \in P (equivalent to bipartite testing)

Theorem. 3-COLORING is NP-Complete.

Reduction: Clause Gadget

For clause $x_i \lor \neg x_j \lor x_k$

![Reduction Diagram](image)

Top node can be colored iff not all three v-nodes are F.

3-Color: Gadget for Variables

- Reduce from 3-SAT.

3 colors: True, False, “Base”

3 special nodes in a clique T, F, B.

For each variable x_i, two nodes v_{i0}, v_{i1}.

Edges $(v_{i0}, B), (v_{i1}, T), (v_{i0}, v_{i1})$.

Either v_{i0} or v_{i1} colored T, the other colored F.

Proof

- Graph is polynomial in $n + m$.
- If satisfying assignment
 - Color B, T, F then v_{i1} as T if $\phi(x_i) = 1$.
 - Since clauses satisfied, can color each gadget.
- If graph 3-colorable
 - One of v_{i0}, v_{i1} must get T color.
 - Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?

Clicker Question

Which of the following is true?

A: If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete

B: k-coloring is NP-complete since any 3-coloring is also a k-coloring for $k \geq 3$

C: k-coloring is not NP-complete since 3-coloring is the hardest case, for $k > 3$ the coloring is easier

D: k-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap

Types of hard problems:

- Circuit-SAT
- Constraint satisfaction
- 3SAT
- Vertex Cover
- Set Cover
- Traveling Salesman
- 0/1 Knapsack
- Graph-Coloring
- Partitioning
- Numerical
- ... any many others. See book or other sources for more examples.

You can use any known NP-complete problem to prove a new problem is NP-complete.