Review
- P – class of problems with polytime algorithm.
- NP – class of problems with polytime certifier.

Example

<table>
<thead>
<tr>
<th>Problem (X)</th>
<th>INDEPENDENT-SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance (s)</td>
<td>Graph G and number k</td>
</tr>
<tr>
<td>Algorithm (A)</td>
<td>No poly-time algorithm known</td>
</tr>
<tr>
<td>Hint (t)</td>
<td>Which nodes are in the answer?</td>
</tr>
<tr>
<td>Certifier (C)</td>
<td>Are those nodes independent and size k?</td>
</tr>
</tbody>
</table>

NP-Complete

- NP-complete = a problem $Y \in NP$ with the property that $X \leq_P Y$ for every problem $X \in NP$.

NP-Complete

- **Cook-Levin Theorem**: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- We’ll look at CIRCUIT-SAT as canonical NP-Complete problem.
Circuit-SAT

Problem: Given a circuit built of AND, OR, and NOT gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

Circuit-SAT reduction

A Circuit-SAT reduction

See Independent Set example in other slides

Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

▶ If $X \in \text{NP}$, then X has a poly-time certifier $C(s, t)$:

$\exists t$ such that $C(s, t)$ outputs Yes

▶ s is Yes instance $\iff \exists t$ that causes $C(s, t)$ to output Yes

▶ s is Yes instance \iff circuit is satisfiable

▶ Algorithm for Circuit-SAT implies an algorithm for X

A Circuit-SAT reduction

▶ Vertex Cover – Does G have VC of size at most k? (Counting gadget is an example for v_3, v_4 only)

See Independent Set example in other slides
Suppose X is in NP.

Fact: If Y is NP-complete and $Y \leq_P X$, then X is NP-complete.

Want to prove problem X is NP-complete

- Check $X \in$ NP.
- Choose known NP-complete problem Y.
- Prove $Y \leq_P X$.

Theorem: 3-SAT is NP-Complete.

- In NP? Yes, check satisfying assignment in poly-time.
- Can show that CIRCUIT-SAT \leq_P 3-SAT

It’s easy to show that 3-SAT \leq_P CIRCUIT-SAT. What can we conclude from this?

A. 3-SAT is NP-complete.
B. 3-SAT is in NP.
C. If there is no polynomial time algorithm for 3-SAT, then there is no polynomial time algorithm for CIRCUIT-SAT.

To show that CIRCUIT-SAT \leq_P 3-SAT, we’ll show how to construct a 3-SAT formula to model an arbitrary CIRCUIT-SAT instance.

Example.
Reduction: **Circuit-Sat \(\leq_P 3\text{-Sat} \)**

- One variable \(x_v \) per circuit node \(v \) plus clauses to enforce circuit computations
- Express Negation, OR, and AND nodes using several implications of the form \(A \Rightarrow B \) (which is equivalent to the clause \(\neg A \lor B \))
- Negation node: \(x_v = \neg x_u \)
 - \(x_u \Rightarrow \neg x_v \)
 - \(\neg x_u \Rightarrow x_v \)
- OR node: \(x_v = x_u \lor x_w \)
 - \(x_u \Rightarrow x_v \)
 - \(x_w \Rightarrow x_v \)
 - \(x_v \Rightarrow x_u \lor x_w \)
- AND node: \(x_v = x_u \land x_w \)
 - \(x_v \Rightarrow x_u \)
 - \(x_v \Rightarrow x_w \)
 - \(\neg x_v \Rightarrow \neg x_u \lor \neg x_w \)

Clicker

Which of the following statements is NOT true?

A. SAT \(\leq_P 3\text{-Sat} \)
B. 3-SAT \(\leq_P \) SAT
C. \(k\text{-Sat} \leq_P \) SAT for all \(k \geq 2 \)
D. \(k\text{-Sat} \) is NP-complete for all \(k \geq 2 \)

NP-Complete Problems So Far

Theorem: INDEPENDENTSET, VERTEXCOVER, SETCOVER, SAT, 3-SAT are all NP-Complete.
NP-Complete Problems: Preview

- 3-SAT
- Indep-Set
- Vertex-Cover
- Set-Cover
- Circuit-SAT
- Ham-Cycle
- Ham-Path
- Traveling-Salesman
- Subset-Sum
- 0-1 Knapsack
- Graph-Coloring
- Constraint satisfaction
- Partitioning
- Numerical Sequencing
- Packing
- Covering

Traveling Salesman Problem

- TSP: Given \(n \) cities and distance function \(d(i, j) \), is there a tour that visits all cities with total distance less than \(D \)?
 - Tour: ordering of cities \(i_1, i_2, \ldots, i_n \) with \(i_1 = 1 \)
 - Distance is \(\sum_{j=1}^{n-1} d(i_j, i_{j+1}) + d(i_n, 1) \)
- Applications: traveling salesman, moving robotic arms
- Let’s prove a simpler problem is NP-complete, and then use it to show TSP is NP-complete.

Hamiltonian Cycle Problem

- \text{HamCycle} - Hamiltonian Cycle. Given directed graph \(G = (V, E) \), is there a cycle that visits each vertex exactly once?
 - \(v_1, v_3, v_2, v_5, v_4, v_6 \) is a Hamiltonian Cycle

Ham-Cycle

- \textbf{Theorem.} Ham-Cycle is NP-Complete.
 - It is in NP.
 - Need to reduce from some NP-Complete problem. Which one?
- \textbf{Claim.} 3-SAT \(\leq_P \) Ham-Cycle.
 - Reduction has two main parts.
 - Make a graph with \(2^n \) Hamiltonian cycles, one per assignment.
 - Augment graph with clauses to invalidate assignments.
Correspondence between Hamiltonian cycles and truth assignments

- $x_i = 1$ iff traverse P_i from $L \to R$

- Node c_j for clause C_j must be visited in middle of some P_i
 - $x_i \in C_j \implies$ can visit c_j during $L \to R$ traversal of P_i, $x_i = 1$ satisfies C_j
 - $\bar{x}_i \in C_j \implies$ can visit c_j during $R \to L$ traversal of P_i, $x_i = 0$ satisfies C_j

- There is a Hamiltonian cycle
 - \iff can visit all clause nodes
 - \iff there is a truth assignment that satisfies all clauses

n rows (bidirected paths) P_1, \ldots, P_n (one per variable)

- Row has $3m + 3$ vertices, connected to neighbors in forward/backward direction
- First and last vertex of row i connected to first and last of $i + 1$
- Source s connected to first and last of row 1
- First and last of row n connected to t
- Edge (t, s)

Skeleton has 2^n possible Hamiltonian Cycles, corresponding to truth assignments to x_1, \ldots, x_n

- Traverse P_i L to R \iff $x_i = 1$
- Traverse \bar{P}_i R to L \iff $x_i = 0$
Reduction: Clause Gadgets

For each clause C_ℓ construct gadget to restrict possible truth assignments

- New node c_ℓ
- If $x_i \in C_\ell$
 - Add edges $(v_i, 3\ell, c_\ell)$ and $(c_\ell, v_i, 3\ell+1)$
 - c_ℓ can be visited during L to R traversal of P_i
- If $\neg x_i \in C_\ell$
 - Add edges $(v_i, 3\ell+1, c_\ell)$ and $(c_\ell, v_i, 3\ell)$
 - c_ℓ can be visited during R to L traversal of P_i

Proof of Correctness

Given a satisfying assignment, construct Hamiltonian Cycle

- If $x_i = 1$ traverse P_i from $L \to R$, else $R \to L$.
- Each C_ℓ is satisfied, so one path P_i is traversed in the correct direction to “splice” c_ℓ into our cycle
- The result is a Hamiltonian Cycle

Given Hamiltonian cycle, construct satisfying assignment:

- If cycle visits c_ℓ from row i, it will also leave to row i because of “buffer” nodes
- Therefore, ignoring clause nodes, cycle traverses each row completely from $L \to R$ or $R \to L$
- Set $x_i = 1$ if P_i traversed $L \to R$, else $x_i = 0$
- Every node c_j visited \Rightarrow every clause C_j is satisfied

Traveling Salesman

TSP. Given n cities and distance function $d(i, j)$, is there a tour that visits all cities with total distance less than D?

Theorem. TSP is NP-Complete

- Clearly in NP.
- Reduction? From Ham-Cycle

Clicker

We want to show that Ham-Cycle \leq_P TSP. How can we do so?

Given a Ham-Cycle instance $G = (V, E)$ make TSP instance with one city per vertex and...

A. $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. Tour distance: $\leq n$?
B. $d(v_i, v_j) = 2$ if $(v_i, v_j) \in E$, else 1. Tour distance: $\leq n$?
C. $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. Tour distance: $\leq m$?
Reduction from Ham-Cycle to TSP

Given HamCycle instance $G = (V, E)$ make TSP instance
 - One city per vertex
 - $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2

Claim: there is a tour of distance $\leq n$ if and only if G has a Hamiltonian cycle
 - A Hamiltonian cycle clearly gives a tour of length n
 - A tour of length n must travel n hops of length 1, which corresponds to a Hamiltonian cycle

Ham-Path

Similar to Hamiltonian Cycle: is there a path that visits every vertex exactly once?

Theorem. Ham-Path is NP-Complete.

Two proofs:
 - Modify 3-SAT to Ham-Cycle reduction.
 - Show that Ham-Cycle reduces to Ham-Path

NP-Complete Problems

```
  Circuit-SAT
     ↓
  B-SAT
     ↓
  Indep-Set  Ham-Cycle
     ↓
  Vertex-Cover  Traveling-Salesman
     ↓
    Set-Cover
```