Review

- P – class of problems with polytime algorithm.
- NP – class of problems with polytime certifier.

Example

<table>
<thead>
<tr>
<th>Problem (X)</th>
<th>INDEPENDENT-SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance (s)</td>
<td>Graph G and number k</td>
</tr>
<tr>
<td>Algorithm (A)</td>
<td>No poly-time algorithm known</td>
</tr>
<tr>
<td>Hint (t)</td>
<td>Which nodes are in the answer?</td>
</tr>
<tr>
<td>Certifier (C')</td>
<td>Are those nodes independent and size k?</td>
</tr>
</tbody>
</table>

NP-Complete

- NP-complete = a problem $Y \in \text{NP}$ with the property that $X \leq_p Y$ for every problem $X \in \text{NP}!$

Cook-Levin Theorem: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- We’ll look at CIRCUIT-SAT as canonical NP-Complete problem.
Circuit-SAT

Problem: Given a circuit built of **And**, **Or**, and **Not** gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

Circuit-SAT

Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

▶ If $X \in \text{NP}$, then X has a poly-time certifier $C(s, t)$:

- s is **Yes** instance $\iff \exists t$ such that $C(s, t)$ outputs **Yes**
- Construct a circuit where s is hard-coded, and circuit is satisfiable iff $\exists t$ that causes $C(s, t)$ to output **Yes**
- s is **Yes** instance \iff circuit is satisfiable
- Algorithm for **Circuit-Sat** implies an algorithm for X

A Circuit-SAT reduction

See Independent Set example in other slides

A Circuit-SAT reduction

▶ Vertex Cover – Does G have VC of size at most k? (Counting gadget is an example for v_3, v_4 only)
Suppose \(X \) is in NP.

Fact: If \(Y \) is NP-complete and \(Y \leq_p X \), then \(X \) is NP-complete.

Want to prove problem \(X \) is NP-complete
- Check \(X \in \text{NP} \).
- Choose known NP-complete problem \(Y \).
- Prove \(Y \leq_p X \).

Theorem: 3-SAT is NP-Complete.
- In NP? Yes, check satisfying assignment in poly-time.
- Can show that Circuit-SAT \(\leq_p \) 3-SAT

From Circuit-SAT to 3-SAT

To show that Circuit-SAT \(\leq_p \) 3-SAT, we'll show how to construct a 3-SAT formula to model an arbitrary Circuit-SAT instance.

Example.
Reduction: \textsc{Circuit-Sat} \leq_P \textsc{3-Sat}

- One variable x_v, per circuit node v, plus clauses to enforce circuit computations
- Express Negation, OR, and AND nodes using several implications of the form $A \Rightarrow B$ (which is equivalent to the clause $\neg A \lor B$)
- Negation node: $x_v = \neg x_u$
 - $x_u \Rightarrow \neg x_v$
 - $\neg x_u \Rightarrow x_v$
- OR node: $x_v = x_u \lor x_w$
 - $x_u \Rightarrow x_v$
 - $x_w \Rightarrow x_v$
 - $x_v \Rightarrow x_u \lor x_w$
- AND node: $x_v = x_u \land x_w$
 - $x_v \Rightarrow x_u$
 - $x_v \Rightarrow x_w$
 - $\neg x_v \Rightarrow \neg x_u \lor \neg x_w$

Reduction: \textsc{Circuit-Sat} \leq_P \textsc{3-Sat}

- Clause $C = x_v$ for input bits v fixed to one
- Clause $C = \neg x_v$ for input bits v fixed to zero
- Clause $C = x_o$ for output bit
- This formula is satisfiable iff circuit is satisfiable.
- Deal with clauses of size 1 and 2 by introducing two new variables and clauses that force them to be equal to zero.

Clicker

Which of the following statements is NOT true?

A. SAT \leq_P 3-SAT
B. 3-SAT \leq_P SAT
C. k-SAT \leq_P SAT for all $k \geq 2$
D. k-SAT is NP-complete for all $k \geq 2$

NP-Complete Problems So Far

Theorem: \textsc{IndependentSet}, \textsc{VertexCover}, \textsc{SetCover}, SAT, 3-SAT are all NP-Complete.
Traveling Salesman Problem

- TSP: Given \(n \) cities and distance function \(d(i, j) \), is there a tour that visits all cities with total distance less than \(D \)?
 - Tour: ordering of cities \(i_1, i_2, \ldots, i_n \) with \(i_1 = 1 \)
 - Distance is \(\sum_{j=1}^{n-1} d(i_j, i_{j+1}) + d(i_n, 1) \)
- Applications: traveling salesman, moving robotic arms
- Let’s prove a simpler problem is NP-complete, and then use it to show TSP is NP-complete.

Hamiltonian Cycle Problem

- **HamCycle** - Hamiltonian Cycle. Given directed graph \(G = (V, E) \), is there a cycle that visits each vertex exactly once?
 - \(v_1, v_3, v_2, v_5, v_4, v_6 \) is a Hamiltonian Cycle

Theorem. **HamCycle** is NP-Complete.
- It is in NP.
- Need to reduce from some NP-Complete problem. Which one?
- **Claim.** 3-SAT \(\leq_P \) **HamCycle**.

Reduction has two main parts.
- Make a graph with \(2^n \) Hamiltonian cycles, one per assignment.
- Augment graph with clause gadgets to ensure assignments satisfy all clauses
Correspondence between Hamiltonian cycles and truth assignments

- \(x_i = 1 \) \iff traverse \(P_i \) from \(L \to R \)

Details

- \(n \) rows (bidirected paths) \(P_1, \ldots, P_n \) (one per variable)
- Row has \(3m + 3 \) vertices, connected to neighbors in forward/backward direction
- First and last vertex of row \(i \) connected to first and last of \(i+1 \)
- Source \(s \) connected to first and last of row 1
- First and last of row \(n \) connected to \(t \)
- Edge \((t, s)\)
- Skeleton has \(2^n \) possible Hamiltonian Cycles, corresponding to truth assignments to \(x_1, \ldots, x_n \)
 - Traverse \(P_i \) L to R \iff \(x_i = 1 \)
 - Traverse \(P_i \) R to L \iff \(x_i = 0 \)
Reduction: Clause Gadgets

For each clause C_ℓ construct gadget to restrict possible truth assignments

- New node c_ℓ
- If $x_i \in C_\ell$
 - Add edges $(v_i, 3\ell, c_\ell)$ and $(c_\ell, v_i, 3\ell + 1)$
 - c_ℓ can be visited during L to R traversal of P_i
- If $\neg x_i \in C_\ell$
 - Add edges $(v_i, 3\ell + 1, c_\ell)$ and $(c_\ell, v_i, 3\ell)$
 - c_ℓ can be visited during R to L traversal of P_i

Proof of Correctness

Given a satisfying assignment, construct Hamiltonian Cycle

- If $x_i = 1$ traverse P_i from $L \rightarrow R$, else $R \rightarrow L$
- Each C_ℓ is satisfied, so one path P_i is traversed in the correct direction to "splice" c_ℓ into our cycle
- The result is a Hamiltonian Cycle

Given Hamiltonian cycle, construct satisfying assignment:

- If cycle visits c_ℓ from row i, it will also leave to row i because of "buffer" nodes
- Therefore, ignoring clause nodes, cycle traverses each row completely from $L \rightarrow R$ or $R \rightarrow L$
- Set $x_i = 1$ if P_i traversed $L \rightarrow R$, else $x_i = 0$
- Every node c_j visited \Rightarrow every clause C_j is satisfied

Traveling Salesman

TSP. Given n cities and distance function $d(i, j)$, is there a tour that visits all cities with total distance less than D?

Theorem. TSP is NP-Complete

- Clearly in NP.
- Reduction? From Ham-Cycle

Clicker

We want to show that Ham-Cycle \leq_P TSP. How can we do so?

Given a Ham-Cycle instance $G = (V, E)$ make TSP instance with one city per vertex and...

A. $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. Tour distance: $\leq n$?
B. $d(v_i, v_j) = 2$ if $(v_i, v_j) \in E$, else 1. Tour distance: $\leq n$?
C. $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. Tour distance: $\leq m$?
Reduction from Ham-Cycle to TSP

Given HamCycle instance $G = (V, E)$ make TSP instance
- One city per vertex
- $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2

Claim: there is a tour of distance $\leq n$ if and only if G has a Hamiltonian cycle
- A Hamiltonian cycle clearly gives a tour of length n
- A tour of length n must travel n hops of length 1, which corresponds to a Hamiltonian cycle

Ham-Path

Similar to Hamiltonian Cycle: is there a path that visits every vertex exactly once?

Theorem. Ham-Path is NP-Complete.

Two proofs:
- Modify 3-SAT to Ham-Cycle reduction.
- Show that Ham-Cycle reduces to Ham-Path

NP-Complete Problems