

COMPSCI 311: Introduction to Algorithms

Lecture 22: Intractability: SAT, NP

Dan Sheldon

University of Massachusetts Amherst

Review: Polynomial-Time Reduction

- ▶ $Y \leq_P X$: Problem Y is **polynomial-time reducible** to Problem X ,

```
solveY(yInput)
  Construct xInput          // poly-time
  foo = solveX(xInput)    // poly # of calls
  return yes/no based on foo // poly-time
```

- ▶ ... if any instance of Problem Y can be solved using
 1. A polynomial number of standard computational steps
 2. A polynomial number of calls to a black box that solves problem X
- ▶ Statement about **relative hardness**
 1. If $Y \leq_P X$ and $X \in P$, then $Y \in P$
 2. If $Y \leq_P X$ and $Y \notin P$ then $X \notin P$

Reduction Strategies

- ▶ Reduction by equivalence
(VERTEX-COVER \leq_P INDEPT-SET and vice versa)
- ▶ Reduction to a more general case
(VERTEX-COVER \leq_P SET-COVER)
- ▶ Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

- ▶ Can we determine if a Boolean formula has a satisfying assignment?

$$\underbrace{(x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3) \wedge (x_2 \vee \bar{x}_3)}_{\text{"clause"}}$$

- ▶ Terminology

Variables	x_1, \dots, x_n	
Term / literal	x_i or \bar{x}_i	variable or its negation
Clause	$C = \bar{x}_1 \vee x_2 \vee \bar{x}_3$	“or” of terms
Formula	$C_1 \wedge C_2 \wedge \dots \wedge C_k$	“and” of clauses
Assignment	$(x_1, x_2, x_3) = (1, 0, 1)$	assign 0/1 to each variable
Satisfying assignment	$(x_1, x_2, x_3) = (1, 1, 0)$	all clauses are “true”

Reduction by Gadgets: Satisfiability

SAT – Given boolean formula $C_1 \wedge C_2 \dots \wedge C_m$ over variables x_1, \dots, x_n , does there exist a satisfying assignment?

3-SAT – Same, but each C_i has exactly three terms

2-SAT — each C_i has exactly two terms

Clicker. What is the strongest statement below that follows easily from the definitions above?

- A. $2\text{-SAT} \leq_P 3\text{-SAT} \leq_P \text{SAT}$
- B. $2\text{-SAT} \leq_P \text{SAT}$ and $3\text{-SAT} \leq_P \text{SAT}$
- C. $\text{SAT} \leq_P 3\text{-SAT} \leq_P 2\text{-SAT}$

Reduction by Gadgets: Satisfiability

Claim: 3-SAT \leq_P INDEPENDENTSET.

Reduction:

- ▶ Given 3-SAT instance $\Phi = \langle C_1, \dots, C_m \rangle$, we will construct an independent set instance $\langle G, m \rangle$ such that G has an independent set of size m iff Φ is satisfiable
- ▶ Return YES if $\text{solveIS}(\langle G, m \rangle) = \text{YES}$

Reduction

- ▶ **Idea:** construct graph G where independent set will select one term per clause to be true

$$(\bar{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3)$$

- ▶ One node per term
- ▶ Edges between all terms in same clause (select at most one)
- ▶ Edges between a literal and all of its negations (consistent truth assignment)

Correctness

$$(\bar{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3)$$

Claim: if G has an independent set of size m , then $\langle C_1, \dots, C_m \rangle$ is satisfiable

- ▶ Suppose S is an independent set of size m
- ▶ Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.
- ▶ Set any remaining variables arbitrarily
- ▶ At most one term per clause is selected. Since m are selected, every clause is satisfied.

Correctness

$$(\bar{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3)$$

Claim: if $\langle C_1, \dots, C_m \rangle$ is satisfiable, then G has an independent set of size m

- ▶ Consider any satisfying assignment of $\langle C_1, \dots, C_m \rangle$
- ▶ Let S consist of one node per triangle corresponding to true literal in that clause. Then $|S| = m$.
- ▶ For (u, v) within clause, at most one endpoint is selected
- ▶ For edge (x_i, \bar{x}_i) between clauses, at most one endpoint is selected, because $x_i = 1$ or $\bar{x}_i = 1$, but not both
- ▶ Therefore S is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through [transitivity](#) of reductions:

means $Y \leq_P X$.

Toward a Definition of NP

Remember our problem hierarchy:

What is special about the mystery problems (NP)?

P and NP

Intuition. For many “hard” decision problems, at least one thing is “easy”: if the correct answer is YES, there is an easy proof

- ▶ Independent set: show an independent set of size at least k
- ▶ SAT: show a satisfying assignment

Problem classes

- ▶ **P**: Decision problems for which there is a [polynomial time algorithm](#).
- ▶ **NP**: Decision problems for which there is a [polynomial time certifier](#).
 - ▶ A solution can be “certified” in polynomial time.
 - ▶ NP = “non-deterministic polynomial time”

Solver vs. Certifier

Let X be a decision problem and s be problem instance
(e.g., $s = \langle G, k \rangle$ for INDEPENDENT SET)

Poly-time solver. Algorithm $A(s)$ such that $A(s) = \text{YES}$ iff correct answer is YES, and running time polynomial time in $|s|$

Poly-time certifier. Algorithm $C(s, t)$ such that for every instance s , there is **some t** such that $C(s, t) = \text{YES}$ iff correct answer is YES, and running time is polynomial in $|s|$.

- ▶ t is the “certificate” or hint; size must also be polynomial in $|s|$

Certifier Example: Independent Set

Input $s = \langle G, k \rangle$.

Problem: Does G have an independent set of size at least k ?

Idea: Certificate $t =$ an independent set of size k

`CertifyIS($\langle G, k \rangle, t$)`

if $|t| < k$ **return** No

for each edge $e = (u, v) \in E$ **do**

if $u \in t$ and $v \in t$ **return** No

Return YES

Polynomial time? Yes, linear in $|E|$.

Example: Independent Set

- ▶ INDEPENDENT SET \in P?
 - ▶ Unknown. No known polynomial time algorithm.
- ▶ INDEPENDENT SET \in NP?
 - ▶ Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula Φ on n variables.

Problem: Is Φ satisfiable?

Idea: Certificate t = the satisfying assignment

$\text{Certify3SAT}(\langle\Phi\rangle, t)$

▷ Check if t makes Φ true

P, NP, EXP

- ▶ 3SAT and INDEPENDENT SET are in NP, as are many other problems that are hard to solve, but easy to certify!
- ▶ **Claim:** $P \subseteq NP$
- ▶ **Claim:** $NP \subseteq EXP$
- ▶ Both straightforward to prove, but not critical right now.

NP-Complete

- ▶ NP-complete = a problem $Y \in \text{NP}$ with the property that $X \leq_P Y$ for every problem $X \in \text{NP}$!

NP-Complete

- ▶ **Cook-Levin Theorem:** In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- ▶ We'll look at CIRCUIT-SAT as canonical NP-Complete problem.

CIRCUIT-SAT

Problem: Given a circuit built of AND, OR, and Not gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

CIRCUIT-SAT

Cook-Levin Theorem CIRCUIT-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

- ▶ If $X \in \text{NP}$, then X has a poly-time certifier $C(s, t)$:

- ▶ s is YES instance $\Leftrightarrow \exists t$ such that $C(s, t)$ outputs YES
- ▶ Construct a circuit where s is hard-coded, and circuit is satisfiable iff $\exists t$ that causes $C(s, t)$ to output YES
- ▶ s is YES instance \Leftrightarrow circuit is satisfiable
- ▶ Algorithm for CIRCUIT-SAT implies an algorithm for X

A CIRCUIT-SAT reduction

See Independent Set example in other slides

A CIRCUIT-SAT reduction

- Vertex Cover – Does G have VC of size at most k ? (Counting gadget is an example for v_3, v_4 only)

Proving New Problems NP-Complete

Fact: If Y is NP-complete and $Y \leq_P X$, then X is NP-complete.

Want to prove problem X is NP-complete

- ▶ Check $X \in \text{NP}$.
- ▶ Choose known NP-complete problem Y .
- ▶ Prove $Y \leq_P X$.

Clicker

It's easy to show that $3\text{-SAT} \leq_P \text{CIRCUIT-SAT}$. What can we conclude from this?

- A. 3-SAT is NP-complete.
- B. 3-SAT is in NP.
- C. If 3-SAT is NP-complete, then CIRCUIT-SAT is also NP-complete.

Proving New Problems NP-Complete

Theorem: 3-SAT is NP-Complete.

- ▶ In NP? Yes, check satisfying assignment in poly-time.
- ▶ Can show that CIRCUIT-SAT \leq_P 3-SAT (next time)

NP-Complete Problems: Preview

