COMPSCI 311: Introduction to Algorithms

Lecture 22: Intractability: SAT, NP

Dan Sheldon

University of Massachusetts Amherst

Review: Polynomial-Time Reduction

▶ $Y \leq_P X$: Problem Y is **polynomial-time reducible** to Problem X,

- $lackbox{ }\ldots$ if any instance of Problem Y can be solved using
 - 1. A polynomial number of standard computational steps
 - 2. A polynomial number of calls to a black box that solves problem \boldsymbol{X}
- ► Statement about relative hardness
 - 1. If $Y \leq_P X$ and $X \in P$, then $Y \in P$
 - 2. If $Y \leq_P X$ and $Y \notin P$ then $X \notin P$

Reduction Strategies

- Reduction by equivalence (Vertex-Cover <_P Indept-Set and vice versa)
- ► Reduction to a more general case (VERTEX-COVER ≤_P SET-COVER)
- ► Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

▶ Can we determine if a Boolean formula has a satisfying assignment?

$$\underbrace{(x_1 \vee \bar{x}_2)}_{\text{"clause"}} \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3) \wedge (x_2 \vee \bar{x}_3)$$

► Terminology

Variables x_1, \ldots, x_n Term / literal x_i or \bar{x}_i variable or its negation Clause $C = \bar{x}_1 \vee x_2 \vee \bar{x}_3$ "or" of terms Formula $C_1 \wedge C_2 \wedge \ldots \wedge C_k$ "and" of clauses Assignment $(x_1, x_2, x_3) = (1, 0, 1)$ assign 0/1 to each variable Satisfying assigment $(x_1, x_2, x_3) = (1, 1, 0)$ all clauses are "true"

Reduction by Gadgets: Satisfiability

SAT – Given boolean formula $C_1 \wedge C_2 \ldots \wedge C_m$ over variables x_1, \ldots, x_n , does there exist a satisfying assignment?

 $3\text{-}\mathrm{SAT}$ – Same, but each C_i has exactly three terms

2-SAT — each C_i has exactly two terms

Clicker. What is the strongest statement below that follows easily from the definitions above?

- A. 2-SAT \leq_P 3-SAT \leq_P SAT
- B. 2-SAT \leq_P SAT and 3-SAT \leq_P SAT
- C. SAT $\leq_P 3$ -SAT $\leq_P 2$ -SAT

Reduction by Gadgets: Satisfiability

Claim: $3\text{-SAT} \leq_P \text{INDEPENDENTSET}$.

Reduction:

- ▶ Given 3-SAT instance $\Phi = \langle C_1, \dots, C_m \rangle$, we will construct an independent set instance $\langle G, m \rangle$ such that G has an independent set of size m iff Φ is satisfiable
- ▶ Return YES if solveIS($\langle G, m \rangle$) = YES

Reduction

 $lackbox{ldea}:$ construct graph G where independent set will select one term per clause to be true

$$(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$$

- ► One node per term
- ► Edges between all terms in same clause (select at most one)
- ▶ Edges between a literal and all of its negations (consistent truth assignment)

Correctness

 $(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$

Claim: if G has an independent set of size m, then $\langle C_1, \ldots, C_m \rangle$ is satisfiable

- ightharpoonup Suppose S is an independent set of size m
- Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.
- ► Set any remaining variables arbitrarily
- ▶ At most one term per clause is selected. Since *m* are selected, every clause is satisfied.

Correctness

 $(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$

Claim: if $\langle C_1, \dots, C_m \rangle$ is satisfiable, then G has an independent set of size m

- lacktriangle Consider any satsifying assignment of $\langle C_1,\ldots,C_m\rangle$
- \blacktriangleright Let S consist of one node per triangle corresponding to true literal in that clause. Then |S|=m.
- ightharpoonup For (u,v) within clause, at most one endpoint is selected
- For edge (x_i,\bar{x}_i) between clauses, at most one endpoint is selected, because $x_i=1$ or $\bar{x}_i=1$, but not both
- lacktriangle Therefore S is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

Toward a Definition of NP

Remember our problem hierarchy:

What is special about the mystery problems (NP)?

P and NP

Intuition. For many "hard" decision problems, at least one thing is "easy": if the correct answer is $Y_{\rm ES}$, there is an easy proof

- ightharpoonup Independent set of size at least k
- ► SAT: show a satisfying assignment

Problem classes

- ▶ P: Decision problems for which there is a polynomial time algorithm.
- ▶ NP: Decision problems for which there is a polynomial time certifier.
 - A solution can be "certified" in polynomial time.
 - ▶ NP = "non-deterministic polynomial time"

Solver vs. Certifier

Let X be a decision problem and s be problem instance (e.g., $s=\langle G,k\rangle$ for INDEPENDENT SET)

Poly-time solver. Algorithm A(s) such that $A(s)={\rm YES}$ iff correct answer is ${\rm YES}$, and running time polynomial time in |s|

Poly-time certifier. Algorithm C(s,t) such that for every instance s, there is some t such that $C(s,t)={\rm YES}$ iff correct answer is ${\rm YES}$, and running time is polynomial in |s|.

ightharpoonup t is the "certificate" or hint; size must also be polynomial in |s|

Certifier Example: Independent Set

Input $s = \langle G, k \rangle$.

Problem: Does G have an independent set of size at least k?

Idea: Certificate t = an independent set of size k

CertifyIS($\langle G, k \rangle, t$)

if |t| < k return No

for each edge $e = (u, v) \in E$ do

if $u \in t$ and $v \in t$ return No

Return YES

Polynomial time? Yes, linear in |E|.

Important: If correct answer is YES, some t makes C output YES, else no way to make C output YES. C makes correct decision about s if you can guess t.

Example: Independent Set

- ► INDEPENDENT SET ∈ P?
 - ► Unknown. No known polynomial time algorithm.
- ► INDEPENDENT SET ∈ NP?
 - ▶ Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula Φ on n variables.

Problem: Is Φ satisfiable?

Idea: Certificate t = the satisfying assignment

Certify3SAT($\langle \Phi \rangle, t$)

 \triangleright Check if t makes Φ true

P, NP, EXP

ightharpoonup 3SAT and INDEPENDENT SET are in NP, as are many other problems that are hard to solve, but easy to certify!

Claim: P ⊆ NP
Claim: NP ⊆ EXP

▶ Both straightforward to prove, but not critical right now.

NP-Complete

▶ NP-complete = a problem $Y \in \mathsf{NP}$ with the property that $X \leq_P Y$ for every problem $X \in \mathsf{NP}!$

NP-Complete

- ▶ Cook-Levin Theorem: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- \blacktriangleright We'll look at $\rm CIRCUIT\text{-}SAT$ as canonical NP-Complete problem.

CIRCUIT-SAT

 $\label{eq:problem:optimize} \textbf{Problem} \hbox{: Given a circuit built of $A{\rm ND}$, $O{\rm R}$, and $N{\rm OT}$ gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?}$

Satisfiable? Yes. Set inputs: 1, 1, 0.

CIRCUIT-SAT

 $\textbf{Cook-Levin Theorem} \ \mathrm{CIRCUIT\text{-}SAT} \ \text{is NP-Complete}.$

Proof Idea: encode arbitrary certifier C(s,t) as a circuit

▶ If $X \in NP$, then X has a poly-time certifier C(s,t):

- ▶ s is YES instance $\Leftrightarrow \exists t$ such that C(s,t) outputs YES
- lackbox Construct a circuit where s is hard-coded, and circuit is satsifiable iff $\exists \ t$ that causes C(s,t) to output YES
- ightharpoonup s is YES instance \Leftrightarrow circuit is satisfiable
- lacktriangle Algorithm for CIRCUIT-SAT implies an algorithm for X

A CIRCUIT-SAT reduction

See Independent Set example in other slides

A CIRCUIT-SAT reduction

▶ Vertex Cover – Does G have VC of size at most k? (Counting gadget is an example for v_3 , v_4 only)

Proving New Problems NP-Complete

Fact: If Y is NP-complete and $Y \leq_P X$, then X is NP-complete.

Want to prove problem X is NP-complete

- ▶ Check $X \in NP$.
- ► Choose known NP-complete problem *Y* .
- ▶ Prove $Y \leq_P X$.

Clicker

It's easy to show that $3\text{-}SAT \leq_P CIRCUIT\text{-}SAT$. What can we conclude from this?

- A. 3-SAT is NP-complete.
- B. 3-SAT is in NP.
- C. If $3\text{-}\mathrm{SAT}$ is NP-complete, then $\mathrm{CIRCUIT}\text{-}\mathrm{SAT}$ is also NP-complete.

Proving New Problems NP-Complete

Theorem: 3-SAT is NP-Complete.

- ► In NP? Yes, check satisfying assignment in poly-time.
- ▶ Can show that CIRCUIT-SAT $\leq_P 3$ -SAT (next time)

NP-Complete Problems: Preview

