COMPSCI 311: Introduction to Algorithms
Lecture 22: Intractability: SAT, NP

Dan Sheldon

University of Massachusetts Amherst

Review: Polynomial-Time Reduction

> Y <p X: Problem Y is polynomial-time reducible to Problem X,

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls

return yes/no based on foo // poly-time

» ...if any instance of Problem Y can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem X

» Statement about relative hardness

1. fY<pXand X € P, thenY € P
2. fY<pXandY ¢ Pthen X ¢ P

Reduction Strategies

» Reduction by equivalence
(VERTEX-COVER <p INDEPT-SET and vice versa)

» Reduction to a more general case
(VERTEX-COVER <p SET-COVER)

» Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

» Can we determine if a Boolean formula has a satisfying assignment?

(CL‘l V fz) /\(fl Va2 V .’f3) A ($2 vV fg)

~—
"clause"
» Terminology
Variables T1,...,Tn
Term / literal Ti or T; variable or its negation
Clause C=Z1Va2VIs “or" of terms
Formula CiANCoN...NCk “and” of clauses

Assignment
Satisfying assigment

(171,1'2,:23) = (1705
(:nl,xz,xg) = (1 1

assign 0/1 to each variable

all clauses are “true”

Reduction by Gadgets: Satisfiability

SAT - Given boolean formula C; A Cy ... A C,, over variables x1, ..., x,, does there
exist a satisfying assignment?

3-SAT — Same, but each C; has exactly three terms

2-SAT — each C; has exactly two terms

Clicker. What is the strongest statement below that follows easily from the definitions
above?

A. 2-SAT <p 3-SAT <p SAT
B. 2-SAT <p SAT and 3-SAT <p SAT
C. SAT <p 3-SAT <p 2-SAT

Reduction by Gadgets: Satisfiability

Claim: 3-SAT <p INDEPENDENTSET.

Reduction:

» Given 3-SAT instance & = (C1,...,C,,), we will construct an independent set
instance (G, m) such that G has an independent set of size m iff ® is satisfiable
» Return YES if solveIS((G,m)) = YES

Reduction

» Idea: construct graph G where independent set will select one term per clause to
be true

(i‘l\/:132\/$3)/\(l‘1\/:i’g\/l’g)/\(ffl\/:i’g\/a_,’g)

» One node per term
» Edges between all terms in same clause (select at most one)
» Edges between a literal and all of its negations (consistent truth assignment)

Correctness

({fl \/.’L’g\/xg)/\(xl\/i'g \/.’Eg)/\(i’l \/fi‘g\/i'g)

Claim: if G has an independent set of size m, then (C1,...,C),) is satisfiable

» Suppose S is an independent set of size m

» Assign variables so selected literals are true. Edges from terms to negations ensure
non-conflicting assignment.

» Set any remaining variables arbitrarily

P> At most one term per clause is selected. Since m are selected, every clause is
satisfied.

Correctness

(:61\/962\/:1:3)/\(:61\/3?2 Vl’g)/\(i‘l \/i‘g\/i‘g)

Claim: if (C1,...,Cy,) is satisfiable, then G has an independent set of size m

» Consider any satsifying assignment of (C1,...,Cp,)

» Let S consist of one node per triangle corresponding to true literal in that clause.
Then |S| =m.

» For (u,v) within clause, at most one endpoint is selected

» For edge (z;,%;) between clauses, at most one endpoint is selected, because z; = 1
or z; = 1, but not both

» Therefore S is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through
transitivity of reductions:

|Indept-Set| | SAT |

T >
means Y <p X.

Toward a Definition of NP

Remember our problem hierarchy:

What is special about the mystery problems (NP)?

P and NP

Intuition. For many “hard” decision problems, at least one thing is “easy”: if the
correct answer is YES, there is an easy proof

» Independent set: show an independent set of size at least &
» SAT: show a satisfying assignment

Problem classes
» P: Decision problems for which there is a polynomial time algorithm.

» NP: Decision problems for which there is a polynomial time certifier.

» A solution can be “certified” in polynomial time.
» NP = “non-deterministic polynomial time”

Solver vs. Certifier

Let X be a decision problem and s be problem instance
(e.g., s = (G, k) for INDEPENDENT SET)

Poly-time solver. Algorithm A(s) such that A(s) = YEs iff correct answer is YES, and
running time polynomial time in |s|

yes/no yes/no
A C
f (I
S s t
Instance Instance Hint

Poly-time certifier. Algorithm C'(s,t) such that for every instance s, there is some ¢
such that C(s,t) = YES iff correct answer is YES, and running time is polynomial in |s|.

» tis the “certificate” or hint; size must also be polynomial in |s]

Certifier Example: Independent Set

Input s = (G, k).
Problem: Does G have an independent set of size at least k7
Idea: Certificate ¢ = an independent set of size k

CertifyIS((G,k),t)
if || < k return No
for each edge e = (u,v) € E do
if wetand v etreturn NO
Return YES

Polynomial time? Yes, linear in |E)|.

Example: Independent Set

» INDEPENDENT SET € P?

» Unknown. No known polynomial time algorithm.

» INDEPENDENT SET € NP?

» Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula ® on n variables.
Problem: Is ® satisfiable?
Idea: Certificate ¢t = the satisfying assignment

Certify3SAT((P),t)
> Check if t makes @ true

P, NP, EXP

» 3SAT and INDEPENDENT SET are in NP, as are many other problems that are
hard to solve, but easy to certify!

» Claim: P C NP

» Claim: NP C EXP

» Both straightforward to prove, but not critical right now.

NP-Complete

NP-
complete

> NP-complete = a problem Y € NP with the property that X <p Y for every
problem X € NP!

NP-Complete

CIRCUIT-SAT

|3-SAT[|SAT| | VC | | sC |

» Cook-Levin Theorem: In 1971, Cook and Levin independently showed that
particular problems were NP-Complete.
> We'll look at CIRCUIT-SAT as canonical NP-Complete problem.

CIRCUIT-SAT

Problem: Given a circuit built of AND, OR, and NOT gates with some hard-coded
inputs, is there a way to set remaining inputs so the output is 17

Inputs:

Satisfiable? Yes. Set inputs: 1, 1, 0.

CIRCUIT-SAT

Cook-Levin Theorem CIRCUIT-SAT is NP-Complete.

Proof ldea: encode arbitrary certifier C(s,t) as a circuit

» If X € NP, then X has a poly-time certifier C(s,1):

yes/no

t

C

[

s t
Instance Hint

» sis YES instance < 3 t such that C(s,t) outputs YES

» Construct a circuit where s is hard-coded, and circuit is satsifiable iff 3 ¢ that
causes C'(s,t) to output YES

> s is YES instance < circuit is satisfiable

» Algorithm for CIRCUIT-SAT implies an algorithm for X

A CircuUiT-SAT reduction

See Independent Set example in other slides

A CircuUiT-SAT reduction

» Vertex Cover — Does GG have VC of size at most k7 (Counting gadget is an example
for v3, v4 only)

(v3)—a)
&

Proving New Problems NP-Complete

Fact: If Y is NP-complete and Y <p X, then X is NP-complete.

Want to prove problem X is NP-complete

> Check X € NP.
» Choose known NP-complete problem Y.
> Prove Y <p X.

Clicker

It's easy to show that 3-SAT <p CIRCUIT-SAT. What can we conclude from this?
A. 3-SAT is NP-complete.

B. 3-SAT is in NP.

C. If 3-SAT is NP-complete, then CIRCUIT-SAT is also NP-complete.

Proving New Problems NP-Complete

Theorem: 3-SAT is NP-Complete.

» In NP7 Yes, check satisfying assignment in poly-time.
» Can show that CIRCUIT-SAT <p 3-SAT (next time)

NP-Complete Problems: Preview

Circuit-SAT
Constraint satisfaction

Packing
Indept-Set Ham-Cycle Subset-Sum Graph-Coloring
Ham-Path

‘ ‘ Partitioning
|Trave|ing-SaIesperson| 0-1 Knapsack

Sequencing Numerical

Covering

