Review: Polynomial-Time Reduction

▶ \(Y \leq_P X \): Problem \(Y \) is polynomial-time reducible to Problem \(X \),

\[
\text{solve} Y(y\text{Input})
\]

Construct \(x\text{Input} \) // poly-time

\[
\text{foo} = \text{solve} X(x\text{Input}) \quad // \text{poly \# of calls}
\]

return yes/no based on foo // poly-time

▶ ... if any instance of Problem \(Y \) can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem \(X \)

▶ Statement about relative hardness

1. If \(Y \leq_P X \) and \(X \in P \), then \(Y \in P \)
2. If \(Y \leq_P X \) and \(Y \not\in P \) then \(X \not\in P \)

Reduction Strategies

▶ Reduction by equivalence

(\text{Vertex-Cover} \leq_P \text{Indept-Set} and vice versa)

▶ Reduction to a more general case

(\text{Vertex-Cover} \leq_P \text{Set-Cover})

▶ Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

▶ Can we determine if a Boolean formula has a satisfying assignment?

\[(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_2 \vee \neg x_3)\]

"clause"

▶ Terminology

<table>
<thead>
<tr>
<th>Variables</th>
<th>(x_1, \ldots, x_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>(x_i) or (\neg x_i) variable or its negation</td>
</tr>
<tr>
<td>Clause</td>
<td>(C = x_1 \vee x_2 \vee x_3) "or" of terms</td>
</tr>
<tr>
<td>Formula</td>
<td>(C_1 \wedge C_2 \wedge \ldots \wedge C_k) "and" of clauses</td>
</tr>
<tr>
<td>Assignment</td>
<td>((x_1, x_2, x_3) = (1, 0, 1)) assign 0/1 to each variable</td>
</tr>
<tr>
<td>Satisfying assignment</td>
<td>((x_1, x_2, x_3) = (1, 1, 0)) all clauses are "true"</td>
</tr>
</tbody>
</table>

Reduction by Gadgets: Satisfiability

\[\text{Claim: } 3\text{-SAT} \leq_P \text{IndependentSet}.\]

\[\text{Reduction:}\]

Given 3-SAT instance \(\Phi = (C_1, \ldots, C_m) \), we will construct an independent set instance \((G, m)\) such that \(G \) has an independent set of size \(m \) iff \(\Phi \) is satisfiable

Return Yes if \(\text{solve} IS((G, m)) = \text{Yes} \)
Reduction

- **Idea**: construct graph G where independent set will select one term per clause to be true

$$
(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)
$$

- One node per term
- Edges between all terms in same clause (select at most one)
- Edges between a literal and all of its negations (consistent truth assignment)

Correctness

Claim: if G has an independent set of size m, then (C_1, \ldots, C_m) is satisfiable

- Suppose S is an independent set of size m
- Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.
- Set any remaining variables arbitrarily
- At most one term per clause is selected. Since m are selected, every clause is satisfied.

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

- 3-SAT
- Indep-Set
- SAT
- Vertex-Cover
- Set-Cover

Toward a Definition of NP

Remember our problem hierarchy:

- **Exp**
- **NP**
- **P**

What is special about the mystery problems (NP)?

P and NP

Intuition. For many “hard” decision problems, at least one thing is “easy”: if the correct answer is YES, there is an easy proof

- Independent set: show an independent set of size at least k
- SAT: show a satisfying assignment

Problem classes

- **P**: Decision problems for which there is a polynomial time algorithm.
- **NP**: Decision problems for which there is a polynomial time certifier.
 - A solution can be “certified” in polynomial time.
 - NP = “non-deterministic polynomial time”
Let X be a decision problem and s be problem instance (e.g., $s = (G, k)$ for Independent Set).

Poly-time solver. Algorithm $A(s)$ such that $A(s) = \text{Yes}$ iff correct answer is Yes, and running time polynomial time in $|s|.$

Poly-time certifier. Algorithm $C(s, t)$ such that for every instance $s,$ there is some t such that $C(s, t) = \text{Yes}$ iff correct answer is Yes, and running time is polynomial in $|s|.$

- t is the “certificate” or hint; size must also be polynomial in $|s|.$

Certifier Example: Independent Set

Input $s = (G, k).$
Problem: Does G have an independent set of size at least k?
Idea: Certificate t = an independent set of size k

CertifyIS($ (G, k) , t$)
if $|t| < k$ return No
for each edge $e = (u, v) \in E$ do
if $u \in t$ and $v \in t$ return No
Return Yes

Polynomial time? Yes, linear in $|E|.$

Example: 3-SAT

Input: formula Φ on n variables.
Problem: Is Φ satisfiable?
Idea: Certificate $t = \text{the satisfying assignment}$

Certify3SAT($ (\Phi) , t$)
- Check if t makes Φ true

P, NP, EXP

- 3SAT and Independent Set are in NP, as are many other problems that are hard to solve, but easy to certify!
- Claim: $P \subseteq NP$
- Claim: $NP \subseteq EXP$
- Both straightforward to prove, but not critical right now.

NP-Complete

- NP-complete = a problem $Y \in NP$ with the property that $X \leq_P Y$ for every problem $X \in NP!$
Cook-Levin Theorem: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
We’ll look at Circuit-SAT as canonical NP-Complete problem.

Circuit-SAT

Problem: Given a circuit built of AND, OR, and NOT gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

A Circuit-SAT reduction

See Independent Set example in other slides

Proving New Problems NP-Complete

Fact: If Y is NP-complete and Y ≤_P X, then X is NP-complete.

Want to prove problem X is NP-complete

- Check X ∈ NP.
- Choose known NP-complete problem Y.
- Prove Y ≤_P X.
It’s easy to show that 3-SAT \leq_P Circuit-SAT. What can we conclude from this?

A. 3-SAT is NP-complete.
B. 3-SAT is in NP.
C. If 3-SAT is NP-complete, then Circuit-SAT is also NP-complete.

Theorem: 3-SAT is NP-Complete.
- In NP? Yes, check satisfying assignment in poly-time.
- Can show that Circuit-SAT \leq_P 3-SAT (next time)