
COMPSCI 311: Introduction to Algorithms
Lecture 22: Intractability: SAT, NP

Dan Sheldon

University of Massachusetts Amherst

Review: Polynomial-Time Reduction

▶ Y ≤P X: Problem Y is polynomial-time reducible to Problem X,

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

▶ . . . if any instance of Problem Y can be solved using
1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem X

▶ Statement about relative hardness
1. If Y ≤P X and X ∈ P , then Y ∈ P
2. If Y ≤P X and Y /∈ P then X /∈ P

Reduction Strategies

▶ Reduction by equivalence
(Vertex-Cover ≤P Indept-Set and vice versa)

▶ Reduction to a more general case
(Vertex-Cover ≤P Set-Cover)

▶ Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

▶ Can we determine if a Boolean formula has a satisfying assignment?

(x1 ∨ x̄2)︸ ︷︷ ︸
"clause"

∧(x̄1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄3)

▶ Terminology

Variables x1, . . . , xn

Term / literal xi or x̄i variable or its negation
Clause C = x̄1 ∨ x2 ∨ x̄3 “or” of terms
Formula C1 ∧ C2 ∧ . . . ∧ Ck “and” of clauses
Assignment (x1, x2, x3) = (1, 0, 1) assign 0/1 to each variable
Satisfying assigment (x1, x2, x3) = (1, 1, 0) all clauses are “true”

Reduction by Gadgets: Satisfiability

SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables x1, . . . , xn, does there
exist a satisfying assignment?

3-SAT – Same, but each Ci has exactly three terms

2-SAT — each Ci has exactly two terms

Clicker. What is the strongest statement below that follows easily from the definitions
above?

A. 2-SAT ≤P 3-SAT ≤P SAT

B. 2-SAT ≤P SAT and 3-SAT ≤P SAT

C. SAT ≤P 3-SAT ≤P 2-SAT

Reduction by Gadgets: Satisfiability

Claim: 3-SAT ≤P IndependentSet.

Reduction:

▶ Given 3-SAT instance Φ = ⟨C1, . . . , Cm⟩, we will construct an independent set
instance ⟨G, m⟩ such that G has an independent set of size m iff Φ is satisfiable

▶ Return Yes if solveIS(⟨G, m⟩) = Yes

Reduction
▶ Idea: construct graph G where independent set will select one term per clause to

be true

(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

▶ One node per term
▶ Edges between all terms in same clause (select at most one)
▶ Edges between a literal and all of its negations (consistent truth assignment)

Correctness
(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

Claim: if G has an independent set of size m, then ⟨C1, . . . , Cm⟩ is satisfiable

▶ Suppose S is an independent set of size m
▶ Assign variables so selected literals are true. Edges from terms to negations ensure

non-conflicting assignment.
▶ Set any remaining variables arbitrarily
▶ At most one term per clause is selected. Since m are selected, every clause is

satisfied.

Correctness
(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

Claim: if ⟨C1, . . . , Cm⟩ is satisfiable, then G has an independent set of size m

▶ Consider any satsifying assignment of ⟨C1, . . . , Cm⟩
▶ Let S consist of one node per triangle corresponding to true literal in that clause.

Then |S| = m.
▶ For (u, v) within clause, at most one endpoint is selected
▶ For edge (xi, x̄i) between clauses, at most one endpoint is selected, because xi = 1

or x̄i = 1, but not both
▶ Therefore S is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through
transitivity of reductions:

3-SAT

Indept-Set SAT

Vertex-Cover

Set-Cover

▶ Y X

means Y ≤P X.

Toward a Definition of NP

Remember our problem hierarchy:

P

NP

EXP

What is special about the mystery problems (NP)?

P and NP

Intuition. For many “hard” decision problems, at least one thing is “easy”: if the
correct answer is Yes, there is an easy proof

▶ Independent set: show an independent set of size at least k
▶ SAT: show a satisfying assignment

Problem classes

▶ P: Decision problems for which there is a polynomial time algorithm.

▶ NP: Decision problems for which there is a polynomial time certifier.
▶ A solution can be “certified” in polynomial time.
▶ NP = “non-deterministic polynomial time”

Solver vs. Certifier
Let X be a decision problem and s be problem instance
(e.g., s = ⟨G, k⟩ for Independent Set)

Poly-time solver. Algorithm A(s) such that A(s) = Yes iff correct answer is Yes, and
running time polynomial time in |s|

A

s

yes/no

Instance

C

s t

yes/no

Instance Hint

Poly-time certifier. Algorithm C(s, t) such that for every instance s, there is some t
such that C(s, t) = Yes iff correct answer is Yes, and running time is polynomial in |s|.

▶ t is the “certificate” or hint; size must also be polynomial in |s|

Certifier Example: Independent Set

Input s = ⟨G, k⟩.
Problem: Does G have an independent set of size at least k?
Idea: Certificate t = an independent set of size k

CertifyIS(⟨G, k⟩, t)
if |t| < k return No
for each edge e = (u, v) ∈ E do

if u ∈ t and v ∈ t return No
Return Yes

Polynomial time? Yes, linear in |E|.

Example: Independent Set

▶ Independent Set ∈ P?
▶ Unknown. No known polynomial time algorithm.

▶ Independent Set ∈ NP?
▶ Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula Φ on n variables.
Problem: Is Φ satisfiable?
Idea: Certificate t = the satisfying assignment

Certify3SAT(⟨Φ⟩, t)
▷ Check if t makes Φ true

P, NP, EXP

P

NP

EXP

▶ 3SAT and Independent Set are in NP, as are many other problems that are
hard to solve, but easy to certify!

▶ Claim: P ⊆ NP
▶ Claim: NP ⊆ EXP
▶ Both straightforward to prove, but not critical right now.

NP-Complete

P

NP

NP-
complete

▶ NP-complete = a problem Y ∈ NP with the property that X ≤P Y for every
problem X ∈ NP!

NP-Complete

CIRCUIT-SAT

SAT3-SAT VC SC IS....

▶ Cook-Levin Theorem: In 1971, Cook and Levin independently showed that
particular problems were NP-Complete.

▶ We’ll look at Circuit-SAT as canonical NP-Complete problem.

Circuit-SAT

Problem: Given a circuit built of And, Or, and Not gates with some hard-coded
inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

Circuit-SAT
Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier C(s, t) as a circuit

▶ If X ∈ NP, then X has a poly-time certifier C(s, t):

C

s t

yes/no

Instance Hint

▶ s is Yes instance ⇔ ∃ t such that C(s, t) outputs Yes
▶ Construct a circuit where s is hard-coded, and circuit is satsifiable iff ∃ t that

causes C(s, t) to output Yes
▶ s is Yes instance ⇔ circuit is satisfiable
▶ Algorithm for Circuit-Sat implies an algorithm for X

A Circuit-SAT reduction

See Independent Set example in other slides

A Circuit-SAT reduction
▶ Vertex Cover – Does G have VC of size at most k? (Counting gadget is an example

for v3, v4 only)

v1 v2

v3 v4

v1

v2

v3

v4 ∧

∨

¬ ∧

¬

2?

1?

0?

∨

∨

∨

∨

∧

∧

∧ Cover?

Proving New Problems NP-Complete

Fact: If Y is NP-complete and Y ≤P X, then X is NP-complete.

Want to prove problem X is NP-complete

▶ Check X ∈ NP.
▶ Choose known NP-complete problem Y .
▶ Prove Y ≤P X.

Clicker

It’s easy to show that 3-SAT ≤P Circuit-SAT. What can we conclude from this?

A. 3-SAT is NP-complete.

B. 3-SAT is in NP.

C. If 3-SAT is NP-complete, then Circuit-SAT is also NP-complete.

Proving New Problems NP-Complete

Theorem: 3-SAT is NP-Complete.

▶ In NP? Yes, check satisfying assignment in poly-time.
▶ Can show that Circuit-SAT ≤P 3-SAT (next time)

NP-Complete Problems: Preview

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle
Ham-Path

Traveling-Salesperson

Subset-Sum

0-1 Knapsack

Graph-Coloring

Constraint satisfaction

Partitioning

NumericalSequencing

Packing

Covering

