Review: Polynomial-Time Reduction

- \(Y \leq_p X \): Problem \(Y \) is polynomial-time reducible to Problem \(X \),
 \[
 \text{solveY(yInput)}\\
 \text{Construct xInput // poly-time}\\
 \text{foo = solveX(xInput) // poly # of calls}\\
 \text{return yes/no based on foo // poly-time}
 \]
- \(...\) if any instance of Problem \(Y \) can be solved using
 1. A polynomial number of standard computational steps
 2. A polynomial number of calls to a black box that solves problem \(X \)
- Statement about relative hardness
 1. If \(Y \leq_p X \) and \(X \in P \), then \(Y \in P \)
 2. If \(Y \leq_p X \) and \(Y \notin P \) then \(X \notin P \)

Reduction by Gadgets: Satisfiability

- Can we determine if a Boolean formula has a satisfying assignment?
 \[
 \left(x_1 \lor \overline{x_2} \right) \land \left(\overline{x_1} \lor x_2 \lor \overline{x_3} \right) \land \left(x_2 \lor \overline{x_3} \right)
 \]
- Terminology

<table>
<thead>
<tr>
<th>Variables</th>
<th>(x_1, \ldots, x_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term / literal</td>
<td>(x_i) or (\overline{x_i})</td>
</tr>
<tr>
<td>Clause</td>
<td>(C = \overline{x_1} \lor x_2 \lor \overline{x_3})</td>
</tr>
<tr>
<td>Formula</td>
<td>(C_1 \land C_2 \land \ldots \land C_k)</td>
</tr>
<tr>
<td>Assignment</td>
<td>((x_1, x_2, x_3) = (1, 0, 1))</td>
</tr>
<tr>
<td>Satisfying assignment</td>
<td>((x_1, x_2, x_3) = (1, 1, 0))</td>
</tr>
</tbody>
</table>
Reduction by Gadgets: Satisfiability

SAT – Given boolean formula \(C_1 \land C_2 \ldots \land C_m \) over variables \(x_1, \ldots, x_n \), does there exist a satisfying assignment?

3-SAT – Same, but each \(C_i \) has exactly three terms

2-SAT — each \(C_i \) has exactly two terms

Clicker. What is the strongest statement below that follows easily from the definitions above?

A. 2-SAT \(\leq_P \) 3-SAT \(\leq_P \) SAT
B. 2-SAT \(\leq_P \) SAT and 3-SAT \(\leq_P \) SAT
C. SAT \(\leq_P \) 3-SAT \(\leq_P \) 2-SAT

Reduction

▶ Idea: construct graph \(G \) where independent set will select one term per clause to be true

\[(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)\]

▶ One node per term
▶ Edges between all terms in same clause (select at most one)
▶ Edges between a literal and all of its negations (consistent truth assignment)

Correctness

Claim: if \(G \) has an independent set of size \(m \), then \(\langle C_1, \ldots, C_m \rangle \) is satisfiable

▶ Suppose \(S \) is an independent set of size \(m \)
▶ Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.
▶ Set any remaining variables arbitrarily
▶ At most one term per clause is selected. Since \(m \) are selected, every clause is satisfied.
Correctness

\[(\overline{x}_1 \vee x_2 \vee x_3) \land (x_1 \vee \overline{x}_2 \vee x_3) \land (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3)\]

Claim: if \((C_1, \ldots, C_m)\) is satisfiable, then \(G\) has an independent set of size \(m\)

- Consider any satisfying assignment of \((C_1, \ldots, C_m)\)
- Let \(S\) consist of one node per triangle corresponding to true literal in that clause. Then \(|S| = m\).
- For \((u, v)\) within clause, at most one endpoint is selected
- For edge \((x_i, \overline{x}_i)\) between clauses, at most one endpoint is selected, because \(x_i = 1\) or \(\overline{x}_i = 1\), but not both
- Therefore \(S\) is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

\[
\begin{align*}
3\text{-SAT} & \rightarrow \text{Indep-Set} \\
\text{Indep-Set} & \rightarrow \text{SAT} \\
\text{Vertex-Cover} & \rightarrow \text{Set-Cover}
\end{align*}
\]

➢ \(Y \rightarrow X\) means \(Y \leq_P X\).

Toward a Definition of NP

Remember our problem hierarchy:

\[
\begin{align*}
\text{EXP} & \rightarrow \text{NP} \\
\text{NP} & \rightarrow \text{P}
\end{align*}
\]

What is special about the mystery problems (NP)?

P and NP

Intuition. For many “hard” decision problems, at least one thing is “easy”: if the correct answer is \(\text{Yes}\), there is an easy proof

- Independent set: show an independent set of size at least \(k\)
- SAT: show a satisfying assignment

Problem classes

- \(P\): Decision problems for which there is a polynomial time algorithm.
- \(NP\): Decision problems for which there is a polynomial time certifier.
 - A solution can be “certified” in polynomial time.
 - \(NP = \) “non-deterministic polynomial time”
Solver vs. Certifier

Let X be a decision problem and s be problem instance (e.g., $s = (G, k)$ for Independent Set).

Poly-time solver. Algorithm $A(s)$ such that $A(s) = \text{YES}$ iff correct answer is YES, and running time polynomial time in $|s|$.

Poly-time certifier. Algorithm $C(s, t)$ such that for every instance s, there is some t such that $C(s, t) = \text{YES}$ iff correct answer is YES, and running time is polynomial in $|s|$.

- t is the “certificate” or hint; size must also be polynomial in $|s|$.

Certifier Example: Independent Set

Input $s = (G, k)$.

Problem: Does G have an independent set of size at least k?

Idea: Certificate $t = \text{an independent set of size } k$

```
CertifyIS(⟨G, k⟩, t)
```

- Check if $|t| < k$ return NO
- For each edge $e = (u, v) \in E$ do
 - if $u \in t$ and $v \in t$ return NO
- Return YES

Polynomial time? Yes, linear in $|E|$.

Important: If correct answer is YES, some t makes C output YES, else no way to make C output YES. C makes correct decision about s if you can guess t.

Example: 3-SAT

Input: formula Φ on n variables.

Problem: Is Φ satisfiable?

Idea: Certificate $t = \text{the satisfying assignment}$

```
Certify3SAT(⟨\Phi⟩, t)
```

- Check if t makes Φ true

Example: Independent Set

- **Independent Set ∈ P?**
 - Unknown. No known polynomial time algorithm.

- **Independent Set ∈ NP?**
 - Yes. Easy to certify solution in polynomial time.
3SAT and Independent Set are in NP, as are many other problems that are hard to solve, but easy to certify!

- **Claim**: $P \subseteq NP$
- **Claim**: $NP \subseteq EXP$
- Both straightforward to prove, but not critical right now.

NP-Complete

- **Claim**: NP-complete = a problem $Y \in NP$ with the property that $X \leq_P Y$ for every problem $X \in NP$!

Circuit-SAT

- **Problem**: Given a circuit built of AND, OR, and NOT gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

- **Circuit-SAT**: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- We’ll look at Circuit-SAT as canonical NP-Complete problem.

Satisfiable? Yes. Set inputs: 1, 1, 0.
Circuit-SAT

Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

- If $X \in NP$, then X has a poly-time certifier $C(s, t)$:
 - s is Yes instance $\iff \exists t$ such that $C(s, t)$ outputs Yes
 - Construct a circuit where s is hard-coded, and circuit is satsifiable iff $\exists t$ that causes $C(s, t)$ to output Yes

A Circuit-SAT reduction

Vertex Cover – Does G have VC of size at most k? (Counting gadget is an example for v_3, v_4 only)

Proving New Problems NP-Complete

Fact: If Y is NP-complete and $Y \leq_P X$, then X is NP-complete.

Want to prove problem X is NP-complete

- Check $X \in NP$.
- Choose known NP-complete problem Y.
- Prove $Y \leq_P X$.

See Independent Set example in other slides
It’s easy to show that \(3\text{-SAT} \leq_p \text{Circuit-SAT}\). What can we conclude from this?

A. \(3\text{-SAT}\) is NP-complete.
B. \(3\text{-SAT}\) is in NP.
C. If \(3\text{-SAT}\) is NP-complete, then \(\text{Circuit-SAT}\) is also NP-complete.

Theorem: \(3\text{-SAT}\) is NP-Complete.
- In NP? Yes, check satisfying assignment in poly-time.
- Can show that \(\text{Circuit-SAT} \leq_p 3\text{-SAT}\) (next time)