Review: Polynomial-Time Reduction

- $Y \leq_P X$: Problem Y is polynomial-time reducible to Problem X.

solveY(yInput)

- Construct $xInput$ // poly-time
- $\text{foo} = \text{solveX(xInput)}$ // poly # of calls
- return yes/no based on foo // poly-time

- ...if any instance of Problem Y can be solved using
 1. A polynomial number of standard computational steps
 2. A polynomial number of calls to a black box that solves problem X

- Statement about relative hardness
 1. If $Y \leq_P X$ and $X \in P$, then $Y \in P$
 2. If $Y \leq_P X$ and $Y \not\in P$ then $X \not\in P$

Reduction Strategies

- Reduction by equivalence
 (Vertex-Cover \leq_P Indept-Set and vice versa)

- Reduction to a more general case
 (Vertex-Cover \leq_P Set-Cover)

- Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

- Can we determine if a Boolean formula has a satisfying assignment?

\[(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_3) \]

- "Clause"

Terminology

<table>
<thead>
<tr>
<th>Variables</th>
<th>x_1, \ldots, x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>x_i or \overline{x}_i</td>
</tr>
<tr>
<td>Clause</td>
<td>$C = \overline{x}_1 \lor x_2 \lor \overline{x}_3$</td>
</tr>
<tr>
<td>Formula</td>
<td>$C_1 \land C_2 \land \ldots \land C_k$</td>
</tr>
<tr>
<td>Assignment</td>
<td>$(x_1, x_2, x_3) = (1, 0, 1)$</td>
</tr>
<tr>
<td>Satisfying assign</td>
<td>$(x_1, x_2, x_3) = (1, 1, 0)$</td>
</tr>
</tbody>
</table>
Reduction by Gadgets: Satisfiability

SAT – Given boolean formula $C_1 \land C_2 \ldots \land C_m$ over variables x_1, \ldots, x_n, does there exist a satisfying assignment?

3-SAT – Same, but each C_i has exactly three terms

2-SAT — each C_i has exactly two terms

Clicker. What is the strongest statement below that follows easily from the definitions above?

A. 2-SAT $\leq_P 3$-SAT \leq_P SAT
B. 2-SAT \leq_P SAT and 3-SAT \leq_P SAT
C. SAT \leq_P 3-SAT \leq_P 2-SAT

Reduction

Idea: construct graph G where independent set will select one term per clause to be true

$(\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)$

One node per term

Edges between all terms in same clause (select at most one)

Edges between a literal and all of its negations (consistent truth assignment)

Correctness

Claim: if G has an independent set of size m, then (C_1, \ldots, C_m) is satisfiable

Suppose S is an independent set of size m

Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.

Set any remaining variables arbitrarily

At most one term per clause is selected. Since m are selected, every clause is satisfied.
Correctness

\[(\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)\]

Claim: if \((C_1, \ldots, C_m)\) is satisfiable, then \(G\) has an independent set of size \(m\)

- Consider any satisfying assignment of \((C_1, \ldots, C_m)\)
- Let \(S\) consist of one node per triangle corresponding to true literal in that clause.
 - Then \(|S| = m\).
- For \((u, v)\) within clause, at most one endpoint is selected
- For edge \((x_i, \overline{x}_i)\) between clauses, at most one endpoint is selected, because \(x_i = 1\) or \(\overline{x}_i = 1\), but not both

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

\[
\begin{array}{c}
\text{3-SAT} \\
\overline{\text{Indep-Set}} \\
\text{SAT} \\
\overline{\text{Vertex-Cover}} \\
\overline{\text{Set-Cover}}
\end{array}
\]

▶ means \(Y \leq_p X\).

Toward a Definition of NP

Remember our problem hierarchy:

\[
\begin{array}{c}
\text{EXP} \\
\text{NP} \\
\text{P}
\end{array}
\]

Intuition. For many “hard” decision problems, at least one thing is “easy”: if the correct answer is \textbf{Yes}, there is an easy proof

- Independent set: show an independent set of size at least \(k\)
- SAT: show a satisfying assignment

Problem classes

- \textbf{P}: Decision problems for which there is a \textit{polynomial time algorithm}.
- \textbf{NP}: Decision problems for which there is a \textit{polynomial time certifier}.
 - A solution can be “certified” in polynomial time.
 - \(NP = \) “non-deterministic polynomial time”

What is special about the mystery problems (NP)?
Solver vs. Certifier

Let X be a decision problem and s be problem instance (e.g., $s = (G, k)$ for Independent Set).

Poly-time solver. Algorithm $A(s)$ such that $A(s) = \text{Yes}$ iff correct answer is \text{Yes}, and running time polynomial time in $|s|$.

Poly-time certifier. Algorithm $C(s, t)$ such that for every instance s, there is some t such that $C(s, t) = \text{Yes}$ iff correct answer is \text{Yes}, and running time is polynomial in $|s|$.

- t is the “certificate” or hint; size must also be polynomial in $|s|$.

Certifier Example: Independent Set

Input $s = (G, k)$.
Problem: Does G have an independent set of size at least k?
Idea: Certificate t = an independent set of size k.

CertifyIS(G, k, t)
if $|t| < k$ return \text{No}
for each edge $e = (u, v) \in E$ do
 if $u \in t$ and $v \in t$ return \text{No}
Return \text{Yes}

Polynomial time? Yes, linear in $|E|$.

Example: 3-SAT

Input: formula Φ on n variables.
Problem: Is Φ satisfiable?
Idea: Certificate t = the satisfying assignment.

Certify3SAT(Φ, t)
\begin{itemize}
 \item Check if t makes Φ true
\end{itemize}

Example: Independent Set

- Independent Set $\in \text{P}$?
 - Unknown. No known polynomial time algorithm.
- Independent Set $\in \text{NP}$?
 - Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

- Formula Φ on n variables.
- Problem: Is Φ satisfiable?
- Idea: Certificate t = the satisfying assignment.

Certify3SAT(Φ, t)
\begin{itemize}
 \item Check if t makes Φ true
\end{itemize}
3SAT and Independent Set are in NP, as are many other problems that are hard to solve, but easy to certify!

- **Claim**: \(P \subseteq \text{NP} \)
- **Claim**: \(\text{NP} \subseteq \text{EXP} \)

Both straightforward to prove, but not critical right now.

NP-complete = a problem \(Y \in \text{NP} \) with the property that \(X \leq_p Y \) for every problem \(X \in \text{NP} \! \)

Circuit-SAT

Problem: Given a circuit built of AND, OR, and NOT gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.
Cook-Levin Theorem: Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

- If $X \in NP$, then X has a poly-time certifier $C(s, t)$:
 - s is Yes instance $\iff \exists t$ such that $C(s, t)$ outputs Yes
 - Construct a circuit where s is hard-coded, and circuit is satisfiable iff $\exists t$ that causes $C(s, t)$ to output Yes
 - Algorithm for Circuit-SAT implies an algorithm for X

A Circuit-SAT reduction

See Independent Set example in other slides

Proving New Problems NP-Complete

Fact: If Y is NP-complete and $Y \leq_p X$, then X is NP-complete.

Want to prove problem X is NP-complete

- Check $X \in NP$.
- Choose known NP-complete problem Y.
- Prove $Y \leq_p X$.
It's easy to show that 3-SAT \leq_P Circuit-SAT. What can we conclude from this?

A. 3-SAT is NP-complete.
B. 3-SAT is in NP.
C. If 3-SAT is NP-complete, then Circuit-SAT is also NP-complete.