Algorithm Design

- Formulate the problem precisely
- Design an algorithm
- Prove correctness
- Analyze running time

Sometimes you can’t find an efficient algorithm.

Example: Network Design

- **Input**: undirected graph \(G = (V, E) \) with edge costs
- **Minimum spanning tree problem**: find min-cost subset of edges so there is a path between any \(u, v \in V \).
 - \(O(m \log n) \) greedy algorithm
- **Minimum Steiner tree problem**: find min-cost subset of edges so there is a path between any \(u, v \in W \) for specified terminal set \(W \).
 - No polynomial-time algorithm is known.

Example: Subset Sum / Knapsack

- **Input**: \(n \) items with weights, capacity \(W \)
- **Goal**: maximize total weight without exceeding \(W \)
 - \(O(nW) \) pseudo-polynomial time algorithm (DP)
 - No polynomial time algorithm known!
Tractability

- Working definition of efficient: polynomial time
 - $O(n^d)$ for some d.

- Huge class of natural and interesting problems for which
 - We don’t know any polynomial time algorithm
 - We can’t prove that none exists

- **Goal**: develop mathematical tools to say when a problem is hard or “intractable”

Preview of Landscape: Classes of Problems

- **P**: solvable in polynomial time
- **NP**: includes most problems we don’t know about
- **EXP**: solvable in exponential time

NP-Completeness

- **NP-complete**: problems that are “as hard as” every other problem in NP.
- A polynomial time algorithm for any NP-complete problem implies one for every problem in NP

P ≠ NP?

Two possibilities:

- **P ≠ NP**: We don’t know which is true, but think $P ≠ NP$
- **$1M prize if you can find out (Clay Institute Millenium Problems)**
Outline

Goal: develop technical tools to make this precise

- **Polynomial-time reductions:** what it means for one problem to be "as hard as" another
- **Define NP:** characterize mystery problems
- **NP-completeness:** some problems in NP are "as hard as" all others

Polynomial-Time Reduction

- Problem Y is polynomial-time reducible to Problem X

  ```
  solveY(yInput)
  Construct xInput // poly-time
  foo = solveX(xInput) // poly # of calls
  return yes/no based on foo // poly-time
  ```

- Notation $Y \leq_P X$

Clicker

Suppose that $Y \leq_P X$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. If Y cannot be solved in polynomial time, then neither can X.
C. Both A and B.
D. Neither A nor B.

Polynomial-Time Reduction

- $Y \leq_P X$

  ```
  solveY(yInput)
  Construct xInput // poly-time
  foo = solveX(xInput) // poly # of calls
  return yes/no based on foo // poly-time
  ```

- Statement about relative hardness. Suppose $Y \leq_P X$, then:
 1. If X is solvable in poly-time, so is Y.
 2. If Y is not solvable in poly-time, neither is X.

- 1: design algorithms, 2: prove hardness
Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

- 3-SAT
- Indep-Set
- SAT
- Vertex-Cover
- Set-Cover

▶ \(Y \leq P X \).

First Reduction: Independent Set and Vertex Cover

Given a graph \(G = (V, E) \),

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
\end{array}
\]

▶ \(S \subset V \) is an independent set if no nodes in \(S \) share an edge. Examples: \(\{3, 4, 5\}, \{1, 4, 5, 6\} \).

▶ \(S \subset V \) is a vertex cover if every edge has at least one endpoint in \(S \). Examples: \(\{1, 2, 6, 7\}, \{2, 3, 7\} \).

Indep-Set Does \(G \) have independent set of size at least \(k \)? **Vertex-Cover** Does \(G \) have a vertex cover of size at most \(k \)?

Independent Set and Vertex Cover

Claim: \(S \) is independent set if and only if \(V - S \) is a vertex cover.

1. \(S \) independent set \(\Rightarrow \) \(V - S \) vertex cover
 - Consider any edge \((u, v)\)
 - \(S \) independent \(\Rightarrow \) either \(u \notin S \) or \(v \notin S \)
 - I.e., either \(u \in V - S \) or \(v \in V - S \)
 - \(\Rightarrow \) \(V - S \) is a vertex cover
2. \(V - S \) vertex cover \(\Rightarrow \) \(S \) independent set
 - Similar.
Independent Set \leq_P Vertex Cover

Claim: Independent Set \leq_P Vertex Cover. **Reduction:**
- On Independent Set instance (G, k)
- Construct Vertex Cover instance $(G, n-k)$
- Return Yes iff $\text{solveVC}(G, n-k) = \text{Yes}$

Correctness for Yes output:
- Suppose G has independent set S with $\geq k$ nodes
- Then $T = V - S$ is a vertex cover with $\leq n - k$ nodes
- The algorithm correctly outputs Yes

Correctness for No output:
- Suppose G has no independent set S with $\geq k$ nodes
- Then there is no vertex cover with T with $\leq n - k$ nodes, otherwise $S = V - T$ is an independent set with $\geq k$ nodes.
- The algorithm correctly outputs No

Aside: Decision versus Optimization

- For intractability and reductions we will focus on decision problems (Yes/No answers)
- Algorithms have typically been for optimization (find biggest/smallest)
- Can reduce optimization to decision and vice versa. Discuss.

Vertex Cover \leq_P Independent Set

Claim: Vertex Cover \leq_P Independent Set

Reduction:
- On Vertex Cover input (G, k)
- Construct Independent Set input $(G, n-k)$
- Return Yes if $\text{solveIS}(G, n-k) = \text{Yes}$

Proof: similar

Reduction Strategies

- Reduction by equivalence
- Reduction to a more general case
- Reduction by “gadgets”
Reduction to General Case: Set Cover

Problem. Given a set \(U \) of \(n \) elements, subsets \(S_1, \ldots, S_m \subset U \), and a number \(k \), does there exist a collection of at most \(k \) subsets \(S_i \) whose union is \(U \)?

- Example: \(U = \{A, B, C, D, E\} \) is the set of all skills, there are five people with skill sets:
 - \(S_1 = \{A, C\} \)
 - \(S_2 = \{B, E\} \)
 - \(S_3 = \{A, C, E\} \)
 - \(S_4 = \{D\} \)
 - \(S_5 = \{B, C, E\} \)

 Find a small team that has all skills. \(S_1, S_4, S_5 \)

Theorem. \(\text{VertexCover} \leq_p \text{SetCover} \)

Intractability: quiz 4

Given the universe \(U = \{1, 2, 3, 4, 5, 6, 7\} \) and the following sets, which is the minimum size of a set cover?

- A. 1
- B. 2
- C. 3
- D. None of the above.

\(U = \{1, 2, 3, 4, 5, 6, 7\} \)
- \(S_a = \{1, 4, 6\} \)
- \(S_b = \{1, 6, 7\} \)
- \(S_c = \{1, 2, 3, 6\} \)
- \(S_d = \{1, 3, 5, 7\} \)
- \(S_e = \{2, 6, 7\} \)
- \(S_f = \{3, 4, 5\} \)

Clicker

Vertex Cover is a special case of Set Cover with:

- A. \(U = V \) and \(S_e = \) the two endpoints of \(e \) for each \(e \in E \).
- B. \(U = E \) and \(S_v = \) the set of edges incident to \(v \) for each \(v \in V \).
- C. \(U = V \cup E \) and \(S_v = \) the set of neighbors of \(v \) together with edges incident to \(v \) for each \(v \in V \).

Reduction of Vertex Cover to Set Cover

Theorem. \(\text{VertexCover} \leq_p \text{SetCover} \)

Reduction.

- Given \(\text{Vertex Cover} \) instance \((G, k) \)
- Construct \(\text{Set Cover} \) instance \((U, S_1, \ldots, S_m, k) \) with \(U = E \) and \(S_v = \) the set of edges incident to \(v \)
- Return \(\text{Yes} \) iff \(\text{solveSC}(U, S_1, \ldots, S_m) = \text{Yes} \)

Proof

- Straightforward to see that \(S_{v_1}, \ldots, S_{v_\ell} \) is a set cover of size \(\ell \) if and only if \(u_1, \ldots, u_\ell \) is a vertex cover of size \(\ell \)
- This implies the algorithm correctly outputs \(\text{Yes} \) if \(G \) has a vertex cover of size \(\leq k \) and \(\text{No} \) otherwise
- Polynomial \# of steps outside of \(\text{solveSC} \)
- Only one call to \(\text{solveSC} \)