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Algorithm Design

» Formulate the problem precisely
» Design an algorithm

» Prove correctness

» Analyze running time

Sometimes you can't find an efficient algorithm.



Example: Network Design

» Input: undirected graph G = (V, E) with edge costs

» Minimum spanning tree problem: find min-cost subset of edges so there is a

path between any u,v € V.
» O(mlogn) greedy algorithm

» Minimum Steiner tree problem: find min-cost subset of edges so there is a path

between any u,v € W for specified terminal set .
» No polynomial-time algorithm is known.



Example: Subset Sum / Knapsack
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P Input: n items with weights, capacity W

> Goal: maximize total weight without exceeding W
» O(nW) pseudo-polynomial time algorithm (DP)
» No polynomial time algorithm known!



Tractability

» Working definition of efficient: polynomial time
> O(n?) for some d.

» Huge class of natural and interesting problems for which
» We don’t know any polynomial time algorithm
» We can’t prove that none exists

» Goal: develop mathematical tools to say when a problem is hard or “intractable”



Preview of Lansdscape: Classes of Problems

P> P: solvable in polynomial time
» NP: includes most problems we don’t know about
> EXP: solvable in exponential time



NP-Completeness

NP-
complete

> NP-complete: problems that are “as hard as” every other problem in NP.
» A polynomial time algorithm for any NP-complete problem implies one for every
problem in NP



P+ NP?

Two possibilities:

NP-
complete

P+ NP P=NP

» We don’t know which is true, but think P # NP
» $1M prize if you can find out (Clay Institute Millenium Problems)



Outline

Goal: develop technical tools to make this precise

NP-

> S ) L .
complete Polynomial-time reductions: what it means for

one problem to be “as hard as” another

» Define NP: characterize mystery problems

> NP-completeness: some problems in NP are “as
hard as” all others



Polynomial-Time Reduction

> Problem Y is polynomial-time reducible to Problem X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls

return yes/no based on foo // poly-time

» .. .if any instance of Problem Y can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem X

» Notation Y <p X



Clicker

Suppose that Y <p X. Which of the following can we infer?
A. If X can be solved in polynomial time, then so can Y.
B. If Y cannot be solved in polynomial time, then neither can X.
C. Both A and B.
D. Neither A nor B.



Polynomial-Time Reduction

> Y <pX
solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls

return yes/no based on foo // poly-time

> Statement about relative hardness. Suppose Y <p X, then:

1. If X is solvable in poly-time, so is Y’
2. If Y is not solvable in poly-time, neither is X

P> 1: design algorithms, 2: prove hardness



Preview

Partial map of problems we can use to solve others in polynomial time, through
transitivity of reductions:

|Indept-Set| | SAT |

T >
means Y <p X.




First Reduction: Independent Set and Vertex Cover

Given a graph G = (V, E),

> S C V is an independent set if no nodes in S share an edge. Examples:
{3,4,5},{1,4,5,6}.

> S C V is a vertex cover if every edge has at least one endpoint in .S. Examples:
{1,2,6,7},{2,3,7}

INDEPT-SET Does GG have independent set of size at least k? VERTEX-COVER Does
G have a vertex cover of size at most k7



/

Intractability: quiz 3 g

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.

B. The black vertices are an independent set of size 3.
C. Both A and B.

D. Neither A nor B.
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Independent Set and Vertex Cover

» Claim: S is independent set if and only if V — S is a vertex cover.

1. S independent set = V — S vertex cover
» Consider any edge (u,v)
» S independent = either u ¢ S orv ¢ S
> le., eitherueV —-—SorveV -9
> = V — S is a vertex cover

2. V — S vertex cover = S independent set
» Similar.



Independent Set <p Vertex Cover
Claim: INDEPENDENT SET <p VERTEX COVER. Reduction:

» On INDEPENDENT SET instance (G, k)
» Construct VERTEX COVER instance (G,n — k)
» Return YES iff solveVC((G,n — k)) = YES

Correctness for YES output:

» Suppose G has independent set S with > k nodes
» Then T =V — S is a vertex cover with < n — k nodes
» The algorithm correctly outputs YES

Correctness for NO output:

» Suppose G has no independent set S with > k nodes

» Then there is no vertex cover with T" with < n — k nodes, otherwise S =V — T is
an independent set with > k nodes.

» The algorithm correctly outputs NO



Vertex Cover <p Independent Set

» Claim: VERTEX COVER <p INDEPENDENT SET
» Reduction:
» On VERTEX COVER input (G, k)
» Construct INDEPENDENT SET input (G,n — k)
> Return YES if solveIS((G,n —k)) = YES

» Proof: similar



Aside: Decision versus Optimization

» For intractiability and reductions we will focus on decision problems (YES/No
answers)

» Algorithms have typically been for optimization (find biggest/smallest)

» Can reduce optimization to decision and vice versa. Discuss.



Reduction Strategies

» Reduction by equivalence
» Reduction to a more general case

» Reduction by “gadgets”



Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets S1,...,S,, C U, and a number k, does
there exist a collection of at most k subsets S; whose union is U?

» Example: U = {A, B,C, D, E} is the set of all skills, there are five people with
skill sets:
SIZ{A70}7 SQ:{BaE}v S3Z{A707E}

Sy ={D}, S5={B,C,E}
» Find a small team that has all skills. S1, S4, S5

Theorem. VERTEXCOVER <p SETCOVER



Intractability: quiz 4

Given the universe U ={ 1, 2, 3, 4, 5, 6, 7 } and the following sets,
which is the minimum size of a set cover?

. L U={1,2,3,4,5,6,7}

A.
B. 2 P S,={1,4,6} S,={1,6,7}
c. 3 L 5.={123,6}  $={13,57}
D. None of the above. $.=12,6,7} 5= {345}
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Clicker

Vertex Cover is a special case of Set Cover with:
A. U =1V and S, = the two endpoints of e¢ for each ¢ € F.
B. U = FE and S, = the set of edges incident to v for each v € V.

C. U=V UEF and S, = the set of neighbors of v together with edges incident to v
foreach v € V.



Reduction of Vertex Cover to Set Cover

Theorem. VERTEXCOVER <p SETCOVER
Reduction.

» Given VERTEX COVER instance (G, k)

» Construct SET COVER instance (U, S1,...,Sn, k) with U = E, and S, = the set
of edges incident to v

» Return YES iff solveSC((U, S1,...,Sm,k)) = YES

Proof
» Straightforward to see that .S,,,...,S,, is a set cover of size £ if and only if
v1,...,Vp is a vertex cover of size /

» This implies the algorithm correctly outputs YES if G has a vertex cover of size
< k and NO otherwise

» Polynomial # of steps outside of solveSC

» Only one call to solveSC



