

COMPSCI 311: Introduction to Algorithms

Lecture 21: Intractability: Intro and Polynomial-Time Reductions

Dan Sheldon

University of Massachusetts Amherst

Algorithm Design

- ▶ Formulate the problem precisely
- ▶ Design an algorithm
- ▶ Prove correctness
- ▶ Analyze running time

Sometimes you can't find an efficient algorithm.

Example: Network Design

- ▶ **Input:** undirected graph $G = (V, E)$ with edge costs
- ▶ **Minimum spanning tree problem:** find min-cost subset of edges so there is a path between any $u, v \in V$.
 - ▶ $O(m \log n)$ greedy algorithm
- ▶ **Minimum Steiner tree problem:** find min-cost subset of edges so there is a path between any $u, v \in W$ for specified terminal set W .
 - ▶ No polynomial-time algorithm is known.

Example: Subset Sum / Knapsack

- ▶ **Input:** n items with weights, capacity W
- ▶ **Goal:** maximize total weight without exceeding W
 - ▶ $O(nW)$ *pseudo-polynomial* time algorithm (DP)
 - ▶ **No polynomial time algorithm known!**

Tractability

- ▶ Working definition of efficient: polynomial time
 - ▶ $O(n^d)$ for some d .
- ▶ Huge class of **natural and interesting** problems for which
 - ▶ We don't know any polynomial time algorithm
 - ▶ We can't prove that none exists
- ▶ **Goal:** develop mathematical tools to say when a problem is hard or “intractable”

Preview of Lansdscape: Classes of Problems

- ▶ **P**: solvable in polynomial time
- ▶ **NP**: includes most problems we don't know about
- ▶ **EXP**: solvable in exponential time

NP-Completeness

- ▶ **NP-complete**: problems that are “as hard as” every other problem in NP.
- ▶ A polynomial time algorithm for any NP-complete problem implies one for *every problem in NP*

$P \neq NP?$

Two possibilities:

- ▶ We don't know which is true, but think $P \neq NP$
- ▶ \$1M prize if you can find out (Clay Institute Millenium Problems)

Outline

Goal: develop technical tools to make this precise

- ▶ **Polynomial-time reductions:** what it means for one problem to be “as hard as” another
- ▶ **Define NP:** characterize mystery problems
- ▶ **NP-completeness:** some problems in NP are “as hard as” all others

Polynomial-Time Reduction

- ▶ Problem Y is **polynomial-time reducible** to Problem X

```
solveY(yInput)
  Construct xInput          // poly-time
  foo = solveX(xInput)    // poly # of calls
  return yes/no based on foo // poly-time
```

- ▶ ... if any instance of Problem Y can be solved using
 1. A polynomial number of standard computational steps
 2. A polynomial number of calls to a black box that solves problem X
- ▶ **Notation** $Y \leq_P X$

Clicker

Suppose that $Y \leq_P X$. Which of the following can we infer?

- A. If X can be solved in polynomial time, then so can Y .
- B. If Y cannot be solved in polynomial time, then neither can X .
- C. Both A and B.
- D. Neither A nor B.

Polynomial-Time Reduction

- ▶ $Y \leq_P X$

```
solveY(yInput)
    Construct xInput          // poly-time
    foo = solveX(xInput)      // poly # of calls
    return yes/no based on foo // poly-time
```

- ▶ Statement about **relative hardness**. Suppose $Y \leq_P X$, then:
 1. If X is solvable in poly-time, so is Y
 2. If Y is *not* solvable in poly-time, neither is X
- ▶ 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial time, through [transitivity](#) of reductions:

means $Y \leq_P X$.

First Reduction: Independent Set and Vertex Cover

Given a graph $G = (V, E)$,

- ▶ $S \subset V$ is an **independent set** if no nodes in S share an edge. Examples: $\{3, 4, 5\}, \{1, 4, 5, 6\}$.
- ▶ $S \subset V$ is a **vertex cover** if every edge has at least one endpoint in S . Examples: $\{1, 2, 6, 7\}, \{2, 3, 7\}$

INDEPT-SET Does G have independent set of size **at least** k ? VERTEX-COVER Does G have a vertex cover of size **at most** k ?

Consider the following graph G . Which are true?

- A.** The white vertices are a vertex cover of size 7.
- B.** The black vertices are an independent set of size 3.
- C.** Both A and B.
- D.** Neither A nor B.

Independent Set and Vertex Cover

► **Claim:** S is independent set if and only if $V - S$ is a vertex cover.

1. S independent set $\Rightarrow V - S$ vertex cover

- Consider any edge (u, v)
- S independent \Rightarrow either $u \notin S$ or $v \notin S$
- I.e., either $u \in V - S$ or $v \in V - S$
- $\Rightarrow V - S$ is a vertex cover

2. $V - S$ vertex cover $\Rightarrow S$ independent set

- Similar.

Independent Set \leq_P Vertex Cover

Claim: INDEPENDENT SET \leq_P VERTEX COVER. **Reduction:**

- ▶ On INDEPENDENT SET instance $\langle G, k \rangle$
- ▶ Construct VERTEX COVER instance $\langle G, n - k \rangle$
- ▶ Return YES iff $\text{solveVC}(\langle G, n - k \rangle) = \text{YES}$

Correctness for YES output:

- ▶ Suppose G has independent set S with $\geq k$ nodes
- ▶ Then $T = V - S$ is a vertex cover with $\leq n - k$ nodes
- ▶ The algorithm correctly outputs YES

Correctness for NO output:

- ▶ Suppose G has no independent set S with $\geq k$ nodes
- ▶ Then there is no vertex cover with T with $\leq n - k$ nodes, otherwise $S = V - T$ is an independent set with $\geq k$ nodes.
- ▶ The algorithm correctly outputs NO

Vertex Cover \leq_P Independent Set

- ▶ **Claim:** VERTEX COVER \leq_P INDEPENDENT SET
- ▶ **Reduction:**
 - ▶ On VERTEX COVER input $\langle G, k \rangle$
 - ▶ Construct INDEPENDENT SET input $\langle G, n - k \rangle$
 - ▶ Return YES if $\text{solveIS}(\langle G, n - k \rangle) = \text{YES}$
- ▶ **Proof:** similar

Aside: Decision versus Optimization

- ▶ For intractability and reductions we will focus on decision problems (YES/No answers)
- ▶ Algorithms have typically been for optimization (find biggest/smallest)
- ▶ Can reduce optimization to decision and vice versa. [Discuss](#).

Reduction Strategies

- ▶ Reduction by equivalence
- ▶ Reduction to a more general case
- ▶ Reduction by “gadgets”

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets $S_1, \dots, S_m \subset U$, and a number k , does there exist a collection of at most k subsets S_i whose union is U ?

- ▶ Example: $U = \{A, B, C, D, E\}$ is the set of all skills, there are five people with skill sets:

$$S_1 = \{A, C\}, \quad S_2 = \{B, E\}, \quad S_3 = \{A, C, E\}$$

$$S_4 = \{D\}, \quad S_5 = \{B, C, E\}$$

- ▶ Find a small team that has all skills. S_1, S_4, S_5

Theorem. VERTEXCOVER \leq_P SETCOVER

Given the universe $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ and the following sets, which is the minimum size of a set cover?

- A.** 1
- B.** 2
- C.** 3
- D.** None of the above.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_a = \{ 1, 4, 6 \} \quad S_b = \{ 1, 6, 7 \}$$

$$S_c = \{ 1, 2, 3, 6 \} \quad S_d = \{ 1, 3, 5, 7 \}$$

$$S_e = \{ 2, 6, 7 \} \quad S_f = \{ 3, 4, 5 \}$$

Clicker

Vertex Cover is a special case of Set Cover with:

- A. $U = V$ and $S_e =$ the two endpoints of e for each $e \in E$.
- B. $U = E$ and $S_v =$ the set of edges incident to v for each $v \in V$.
- C. $U = V \cup E$ and $S_v =$ the set of neighbors of v together with edges incident to v for each $v \in V$.

Reduction of Vertex Cover to Set Cover

Theorem. VERTEXCOVER \leq_P SETCOVER

Reduction.

- ▶ Given VERTEX COVER instance $\langle G, k \rangle$
- ▶ Construct SET COVER instance $\langle U, S_1, \dots, S_m, k \rangle$ with $U = E$, and $S_v =$ the set of edges incident to v
- ▶ Return YES iff $\text{solveSC}(\langle U, S_1, \dots, S_m, k \rangle) = \text{YES}$

Proof

- ▶ Straightforward to see that $S_{v_1}, \dots, S_{v_\ell}$ is a set cover of size ℓ if and only if v_1, \dots, v_ℓ is a vertex cover of size ℓ
- ▶ This implies the algorithm correctly outputs YES if G has a vertex cover of size $\leq k$ and NO otherwise
- ▶ Polynomial # of steps outside of `solveSC`
- ▶ Only one call to `solveSC`