Algorithm Design

- Formulate the problem precisely
- Design an algorithm
- Prove correctness
- Analyze running time

Sometimes you can’t find an efficient algorithm.

Example: Network Design

- **Input**: undirected graph $G = (V, E)$ with edge costs
- **Minimum spanning tree problem**: find min-cost subset of edges so there is a path between any $u, v \in V$.
 - $O(m \log n)$ greedy algorithm
- **Minimum Steiner tree problem**: find min-cost subset of edges so there is a path between any $u, v \in W$ for specified terminal set W.
 - No polynomial-time algorithm is known.

Example: Subset Sum / Knapsack

- **Input**: n items with weights, capacity W
- **Goal**: maximize total weight without exceeding W
 - $O(nW)$ pseudo-polynomial time algorithm (DP)
 - No polynomial time algorithm known!
Tractability

- Working definition of efficient: polynomial time
 - $O(n^d)$ for some d.

- Huge class of natural and interesting problems for which
 - We don’t know any polynomial time algorithm
 - We can’t prove that none exists

- **Goal**: develop mathematical tools to say when a problem is hard or “intractable”

Preview of Landscape: Classes of Problems

- P: solvable in polynomial time
- NP: includes most problems we don’t know about
- EXP: solvable in exponential time

NP-Completeness

- **NP-complete**: problems that are “as hard as” every other problem in NP.
- A polynomial time algorithm for any NP-complete problem implies one for every problem in NP.

$P \neq NP$?

Two possibilities:

- We don’t know which is true, but think $P \neq NP$
- $\$1M prize if you can find out (Clay Institute Millenium Problems)
Goal: develop technical tools to make this precise

- Polynomial-time reductions: what it means for one problem to be "as hard as" another
- Define NP: characterize mystery problems
- NP-completeness: some problems in NP are "as hard as" all others

Polynomial-Time Reduction

Problem \(Y \) is polynomial-time reducible to Problem \(X \)

\[
\text{solve}(y) \\
\text{Construct } x \text{ // poly-time} \\
\text{foo} = \text{solve}(x) \text{ // poly # of calls} \\
\text{return yes/no based on foo // poly-time}
\]

...if any instance of Problem \(Y \) can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem \(X \)

Notation \(Y \leq_P X \)

Clicker

Suppose that \(Y \leq_P X \). Which of the following can we infer?

A. If \(X \) can be solved in polynomial time, then so can \(Y \).
B. If \(Y \) cannot be solved in polynomial time, then neither can \(X \).
C. Both A and B.
D. Neither A nor B.

Polynomial-Time Reduction

- \(Y \leq_P X \)
- \[
\text{solve}(y) \\
\text{Construct } x \text{ // poly-time} \\
\text{foo} = \text{solve}(x) \text{ // poly # of calls} \\
\text{return yes/no based on foo // poly-time}
\]
- Statement about relative hardness. Suppose \(Y \leq_P X \), then:
 1. If \(X \) is solvable in poly-time, so is \(Y \)
 2. If \(Y \) is not solvable in poly-time, neither is \(X \)
- 1: design algorithms, 2: prove hardness
Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

- 3-SAT
- Indep-Set
- SAT
- Vertex-Cover
- Set-Cover

▶ Y ↓ X

means Y \leq P X.

First Reduction: Independent Set and Vertex Cover

Given a graph G = (V, E),

1 2
3 4 5
6 7

▶ S ⊂ V is an independent set if no nodes in S share an edge. Examples: {3, 4, 5}, {1, 4, 5, 6}.

▶ S ⊂ V is a vertex cover if every edge has at least one endpoint in S. Examples: {1, 2, 6, 7}, {2, 3, 7}

Indep-Set Does G have independent set of size at least k? Vertex-Cover Does G have a vertex cover of size at most k?

Intractability: quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.

Independent Set and Vertex Cover

▶ Claim: S is independent set if and only if V − S is a vertex cover.

1. S independent set ⇒ V − S vertex cover
 ▶ Consider any edge (u, v)
 ▶ S independent ⇒ either u \notin S or v \notin S
 ▶ i.e., either u \in V − S or v \in V − S
 ▶ ⇒ V − S is a vertex cover

2. V − S vertex cover ⇒ S independent set
 ▶ Similar.
Independent Set ≤ₚ Vertex Cover

Claim: \textsc{Independent Set} \leq \textsc{Vertex Cover}. Reduction:

- On \textsc{Independent Set} instance \((G, k)\)
- Construct \textsc{Vertex Cover} instance \((G, n - k)\)
- Return \textsc{Yes} iff \textsc{solveVC}(\((G, n - k)\)) = \textsc{Yes}

Correctness for \textsc{Yes} output:
- Suppose \(G\) has independent set \(S\) with \(\geq k\) nodes
- Then \(T = V - S\) is a vertex cover with \(\leq n - k\) nodes
- The algorithm correctly outputs \textsc{Yes}

Correctness for \textsc{No} output:
- Suppose \(G\) has no independent set \(S\) with \(\geq k\) nodes
- Then there is no vertex cover with \(T\) with \(\leq n - k\) nodes, otherwise \(S = V - T\) is an independent set with \(\geq k\) nodes.
- The algorithm correctly outputs \textsc{No}

Aside: Decision versus Optimization

- For intractability and reductions we will focus on decision problems (\textsc{Yes}/\textsc{No} answers)
- Algorithms have typically been for optimization (find biggest/smallest)
- Can reduce optimization to decision and vice versa.

Vertex Cover ≤ₚ Independent Set

Claim: \textsc{Vertex Cover} \leq \textsc{Independent Set}

Reduction:

- On \textsc{Vertex Cover} input \((G, k)\)
- Construct \textsc{Independent Set} input \((G, n - k)\)
- Return \textsc{Yes} if \textsc{solveIS}(\((G, n - k)\)) = \textsc{Yes}

Proof: similar

Reduction Strategies

- Reduction by equivalence
- Reduction to a more general case
- Reduction by “gadgets”
Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets $S_1, \ldots, S_m \subset U$, and a number k, does there exist a collection of at most k subsets S_i whose union is U?

- **Example:** $U = \{A, B, C, D, E\}$ is the set of all skills, there are five people with skill sets:
 - $S_1 = \{A, C\}$
 - $S_2 = \{B, E\}$
 - $S_3 = \{A, C, E\}$
 - $S_4 = \{D\}$
 - $S_5 = \{B, C, E\}$

- Find a small team that has all skills. S_1, S_4, S_5

Theorem. $\text{VertexCover} \leq_P \text{SetCover}$

Intractability: quiz 4

Given the universe $U = \{1, 2, 3, 4, 5, 6, 7\}$ and the following sets, which is the minimum size of a set cover?

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** None of the above.

Clicker

Vertex Cover is a special case of **Set Cover** with:

- **A.** $U = V$ and S_e = the two endpoints of e for each $e \in E$.
- **B.** $U = E$ and S_v = the set of edges incident to v for each $v \in V$.
- **C.** $U = V \cup E$ and S_v = the set of neighbors of v together with edges incident to v for each $v \in V$.

Reduction of Vertex Cover to Set Cover

Theorem. $\text{VertexCover} \leq_P \text{SetCover}$

Reduction.

- **Given** Vertex Cover instance (G, k)
- **Construct** Set Cover instance (U, S_1, \ldots, S_m, k) with $U = E$, and S_v = the set of edges incident to v
- **Return** Yes iff $\text{solveSC}((U, S_1, \ldots, S_m, k)) = \text{Yes}$

Proof.

- Straightforward to see that $S_{v_1}, \ldots, S_{v_\ell}$ is a set cover of size ℓ if and only if v_1, \ldots, v_ℓ is a vertex cover of size ℓ
- This implies the algorithm correctly outputs Yes if G has a vertex cover of size $\leq k$ and No otherwise
- Polynomial # of steps outside of solveSC
- Only one call to solveSC