
COMPSCI 311: Introduction to Algorithms
Lecture 18: Network Flow

Dan Sheldon

University of Massachusetts Amherst

A Puzzle

How many loads of grain can you ship from s to t? Which boats are used?

A Puzzle

Flow Network

ts

u

v

2 1

1

3

2

Max-Flow Problem

ts

u

v

2 1

1

3

2

Problem input is a flow network
▶ Directed graph
▶ Source node s
▶ Target node or sink t
▶ Edge capacities c(e) ≥ 0

Solution: A Flow

ts

u

v

2/2 1/1

1/1

1/3

2/2

A network flow is an assignment of values f(e) to
each edge e, which satisfy:
▶ Capacity constraints: 0 ≤ f(e) ≤ c(e) for all e

▶ Flow conservation:∑
e into v

f(e) =
∑

e out of v

f(e)

for all v /∈ {s, t}.

Value v(f) of flow f = total flow on edges leaving
source

Max flow problem: find a flow of maximum value

Algorithm Design Techniques

▶ Greedy

▶ Divide and Conquer

▶ Dynamic Programming

▶ Network Flows

Network Flow

▶ Previous topics were design techniques
(Greedy, Divide-and-Conquer, Dynamic Programming)

▶ Network flow: a specific class of problems with many applications

▶ Direct applications: commodities
in networks
▶ transporting goods on the rail

network
▶ packets on the internet
▶ gas through pipes

▶ Indirect applications:
▶ Matching in graphs
▶ Airline scheduling
▶ Baseball elimination

Plan: design and analyze algorithms for max-flow problem,
then apply to solve other problems

First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts Soviet rail network (Harris
& Ross, RAND report, 1955)

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.

Designing a Max-Flow Algorithm
First idea: initialize to zero flow and then repeatedly “augment” flow on paths from s
to t until we can no longer do so.

ts

u

v

0/2 0/1

0/1

0/3

0/2

ts

u

v

0/2 0/1

0/1

0/3

0/2

ts

u

v

2/2 0/1

0/1

2/3

2/2

Problem: we are now stuck. All s→ t paths have a saturated edge.

We would like to “augment” s
+1−−→ v

−1←−− u
+1−−→ t, but this is not a real s→ t path.

How can we identify such an opportunity?

Residual Graph (Key Idea!!)
The residual graph Gf identifies ways to increase flow on edges with leftover capacity, or
decrease flow on edges already carrying flow:

ts

u

v

2/2 0/1

0/1

2/3

2/2

G

ts

u

v

Gf

2

1

1

2

21

residual
capacities

For each original edge e = (u, v) in G, it has:

▶ A forward edge e = (u, v) with residual capacity c(e)− f(e)
▶ A reverse edge e′ = (v, u) with residual capacity f(e)

Edges with zero residual capacity are omitted!!

Exercise: residual graph

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Let G and f be as depicted above. What is the residual capacity of edge (v1, v3) in Gf ?

A. 3

B. 1

C. 4

D. The edge is not present in Gf .

Exercise: residual graph

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Let G and f be as depicted above. What is the residual capacity of edge (v2, v3) in Gf ?

A. 5

B. 4

C. 9

D. The edge is not present in Gf .

Exercise: residual graph

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Let G and f be as depicted above. What is the residual capacity of edge (v4, v2) in Gf ?

A. 0

B. 7

C. 4

D. The edge is not present in Gf .

Exercise: residual graph

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

5

8

31
5

4

3

11

7
5

15

4

12

Emphasis: Residual Graph

▶ The residual graph is the key data structure used for network flows

▶ If you have a graph G and flow f , construct the residual graph Gf

Augment Operation
Revised Idea: use s-t paths in the residual graph (“augmenting paths”) to augment flow

ts

u

v

2/2 0/1

0/1

2/3

2/2

G

ts

u

v

Gf

2

1

1

2

21

ts

u

v

2

1

1

2

21

Gf

ts

u

v

2/2 1/1

1/1

1/3

2/2

new flow

▶ P = s→ v → u→ t has "bottleneck capacity" (least residual capacity) equal to 1

▶ In original graph, increase flow for forward edges, decrease for backward edges.

▶ Augment s
+1−−→ v

−1←−− u
+1−−→ t

Clicker Question

What is the largest bottleneck capacity of any augmenting path?

v1 v2

v3 v4

ts

11

5

5

8

31
5

4

3

11

7
5

15

4

12

A. 1
B. 4
C. 5
D. 11

Augment Operation

Revised Idea: use paths in the residual graph to augment flow

f = flow in G
P = augmenting path = s→ t path in Gf

Augment(f , P)
Let b = bottleneck(P , f) ▷ least residual capacity in P
for each edge e in P do

if e is a forward edge then
f(e) = f(e) + b ▷ increase flow on forward edges

else e is a backward edge
Let e′ be opposite edge in G
f(e′) = f(e′)− b ▷ decrease flow on backward edges

Augment Example

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

5

8

31
5

4

3

11

7
5

15

4

12

Augmenting Path

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

5

8

3
5

4

3

11

7
5

15

4

12

1

New Flow

G

v1 v2

v3 v4

ts

11/16

12/13

11/14

0/9

12/12

1/4
7/7

19/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

1

12

31
9

3

11

7
1

19

4

12

Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use them to augment flow!

Ford-Fulkerson(G, s, t)
▷ Initially, no flow
Initialize f(e) = 0 for all edges e
Initialize Gf = G

▷ Augment flow as long as it is possible
while there exists an s-t path P in Gf do

f = Augment(f , P)
update Gf

return f

Clicker

Given a graph G and a flow f , how can you test if f is a maximum flow?

A. Check for an s→ t path in the residual graph Gf .

B. Check for an s→ t path in the residual graph Gf .

C. Check for an s→ t path in the residual graph Gf .

D. Check for an s→ t path in the residual graph Gf .

Ford-Fulkerson Example

See Pearson slides

Ford-Fulkerson Analysis

▶ Step 1: argue that F-F returns a flow

▶ Step 2: analyze termination and running time

▶ Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

Claim: If f is a flow then f ′ = Augment(f , P) is also a flow.

Proof idea. Verify two conditions for f ′ to be a flow: capacity and flow conservation.

Capacity

ts

u

v

2/2 0/1

0/1

2/3

2/2

G

ts

u

v

2

1

1

2

21

Gf

▶ Suppose original edge is e = (x, y)

▶ If forward edge (x, y) appears in P , then flow on e increases by bottleneck capacity
b, which is at most c(e)− f(e), so does not exceed c(e)

▶ If reverse edge (y, x) appears in P , then flow decreases by bottleneck capacity b,
which is at most f(e), so is at least 0

Flow Conservation

ts

u

v

2

1

1

2

21

Gf

ts

u

v

G

+1

–1

+1

Consider any node v in augmenting path, do case analysis on edge types:

residual graph: P = s⇝ u −→v −→ w ⇝ t

original graph: u
+b−−→v

+b−−→ w

u
+b−−→v

−b←−− w

u
−b←−−v

+b−−→ w

u
−b←−−v

−b←−− w

In all cases, change in incoming flow at v is equal to the change in outgoing flow.

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow values and residual
capacities remain integers during the algorithm.

Running time:

▶ In each F-F iteration, flow increases by at least 1. Therefore, number of iterations
is at most v(f∗), where f∗ is the final flow.

▶ Let C be the total capacity of edges leaving source s.
▶ Then v(f∗) ≤ C.
▶ So F-F terminates in at most C iterations

Running time per iteration? O(m + n) to find an augmenting path

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs:
the max-flow min-cut theorem.

▶ An s-t cut (A, B) is a partition of the nodes into sets A and B where s ∈ A, t ∈ B
▶ Capacity of cut (A, B) equals

c(A, B) =
∑

e from A to B

c(e)

▶ Flow across a cut (A, B) equals

f(A, B) =
∑

e out of A

f(e)−
∑

e into A

f(e)

Example of Cut

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Exercise: write capacity of cut and flow across cut.

Capacity is 29 and flow across cut is 19.

Clicker Question

What is the capacity of the cut and the flow across the cut?

Capacity Flow

A. 16+4+9+14 11+1+3+11
B. 16+4 -9+14 11+1 -4+11
C. 16+4+14 11+1 -4+11
D. 16+4+14 11+1+11

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Flow Value Lemma

First relationship between cuts and flows

Lemma: let f be any flow and (A, B) be any s-t cut. Then

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

Proof: see book. Basic idea is to use conservation of flow:
all the flow out of s must leave A eventually.

