Review: Ford-Fulkerson Algorithm

⊿ Augment flow as long as it is possible
while there exists an s-t path P in residual graph G_f do
\[f = \text{Augment}(f, P) \]
update G_f
end while
return f

Pearson Demo
Correctness: relate maximum flow to minimum cut

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs: the max-flow min-cut theorem.

- An s-t cut (A, B) is a partition of the nodes into sets A and B where $s \in A$, $t \in B$
- Capacity of cut (A, B) equals
 \[c(A, B) = \sum_{e \text{ from } A \text{ to } B} c(e) \]
- Flow across a cut (A, B) equals
 \[f(A, B) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \]

Clicker Question
What is the capacity of the cut and the flow across the cut?

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 16+4+9+14 11+1-3+11</td>
<td></td>
</tr>
<tr>
<td>B. 16+4-9+14 11+1-4+11</td>
<td></td>
</tr>
<tr>
<td>C. 16+4+14 11+1-4+11</td>
<td></td>
</tr>
<tr>
<td>D. 16+4+14 11+1+11</td>
<td></td>
</tr>
</tbody>
</table>

Flow Value Lemma

First relationship between cuts and flows

Lemma: let f be any flow and (A, B) be any s-t cut. Then
\[\nu(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \]

Proof: see book. Basic idea is to use conservation of flow: all the flow out of s must leave A eventually.
Corollary: Cuts and Flows

Really important corollary of flow-value lemma

Corollary: Let \(f \) be any \(s-t \) flow and let \((A, B)\) be any \(s-t \) cut. Then \(v(f) \leq c(A, B) \).

Proof:

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
\]

\[
\leq \sum_{e \text{ out of } A} f(e)
\]

\[
\leq \sum_{e \text{ out of } A} c(e)
\]

\[
= c(A, B)
\]

Duality

Illustration on board

Claim If there is a flow \(f^* \) and cut \((A^*, B^*)\) such that \(v(f^*) = c(A^*, B^*) \), then

- \(f^* \) is a maximum flow
- \((A^*, B^*)\) is a minimum cut

Clicker

Suppose \(f \) is a flow, and there is a path from \(s \) to \(u \) in \(G_f \), but no path from \(s \) to \(v \) in \(G_f \). Then

A. There is no edge from \(u \) to \(v \) in \(G \).

B. If there is an edge from \(u \) to \(v \) in \(G \) then \(f \) does not send any flow on this edge.

C. If there is an edge from \(u \) to \(v \) in \(G \) then \(f \) fully saturates it with flow.

D. None of the above.

F-F finds a minimum cut

Theorem: The cut \((A, B)\) where \(A \) is the set of all nodes reachable from \(s \) in the residual graph is a minimum-cut.

F-F returns a maximum flow

Theorem: The \(s-t \) flow \(f \) returned by F-F is a maximum flow.

- Since \(f \) is the final flow there are no residual paths in \(G_f \).
- Let \((A, B)\) be the \(s-t \) cut where \(A \) consists of all nodes reachable from \(s \) in the residual graph.
 - Any edge out of \(A \) must have \(f(e) = c(e) \) otherwise there would be more nodes than just \(A \) that reachable from \(s \).
 - Any edge into \(A \) must have \(f(e) = 0 \) otherwise there would be more nodes than just \(A \) that reachable from \(s \).
- Therefore

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
\]

\[
= \sum_{e \text{ out of } A} c(e) = c(A, B)
\]
Ford-Fulkerson Running Time

- Flow increases at least one unit per iteration
- F-F terminates in at most \(C \) iterations, where \(C \) is the sum of capacities leaving source.
- \(C \leq n C_{\text{max}} \), where \(C_{\text{max}} \) = maximum edge capacity
- Running time: \(O(m n C_{\text{max}}) \)

Is this polynomial? pseudo-polynomial (exponential in \(\log C_{\text{max}} \))

Improving Running Time

Good path choice will find:
- \(s \rightarrow u \rightarrow t \), flow \(C \)
- \(s \rightarrow v \rightarrow t \), flow \(C \)

Worst-case: keep incrementing by 1:
- \(s \rightarrow u \rightarrow v \rightarrow t \), flow 1
- \(s \rightarrow v \rightarrow u \rightarrow t \), flow 1
- \(s \rightarrow u \rightarrow v \rightarrow t \), flow 1
- ...

Solution: choose good augmenting paths, with
- Large enough bottleneck capacity: capacity-scaling algorithm
- Fewest edges: Edmonds-Karp, Dinitz

Capacity-scaling algorithm

Start with large \(\Delta \), divide by two in each phase

let \(f(e) = 0 \) for all \(e \in E \)
let \(\Delta = \) largest power of 2 \(\leq C_{\text{max}} \)

while \(\Delta \geq 1 \) do

prune residual graph \(G_f \) to \(G_f(\Delta) \)

while there is augmenting \(s \rightarrow t \) path \(P \) in \(G_f(\Delta) \) do

\(f = \) Augment \((f, P)\)

update \(G_f(\Delta) \) \(\triangleright \) only \(e \geq \Delta \)

end while

\(\Delta = \Delta / 2 \) \(\triangleright \) refine

end while
Capacity-Scaling: Running Time

- How many scaling phases? \(\Theta(\log C_{\text{max}}) \)
- How much does the flow increase at every augmentation? \(\geq \Delta \)
- How many augmentations per phase? \(\leq 2m \)
 - Can show: at end of \(\Delta \) phase, flow value within \(m\Delta \) of max.
 - \(\implies \) at most \(2m \) iterations \(\Delta/2 \) phase
 - (Sketch) Construct cut \((A, B) \) as in max-flow / min-cut theorem.
 - Edges from \(A \) to \(B \) are within \(\Delta \) of being saturated.
 - Edges from \(B \) to \(A \) carry less than \(\Delta \) flow.
 - \(\implies \) Cut capacity at most \(m\Delta \) more than flow value.
- Recall: time to find augmenting path? \(O(m) \)
- Overall: \(O(m^2 \log C_{\text{max}}) \), polynomial

Running Times

- Basic F-F: \(O(mnC_{\text{max}}) \) pseudo-polynomial
 - polynomial in magnitude
- Capacity-scaling: \(O(m^2 \log C_{\text{max}}) \) polynomial
 - polynomial in number of bits
- Edmonds-Karp: \(O(m^2n) \) strongly-polynomial
 - does not depend on values, only \(m, n \)
- Dinitz: \(O(mn^2) \) even better
- Edmonds-Karp and Dinitz: choose short augmenting paths