From Rates to Costs

- Similar, but not the same as finding a shortest path.
- Let’s change from rates to costs by transforming the problem.
- Let $c_e = -\log r_e$ be the cost of edge e.

Rates

Costs

Maximum-Rate Path \rightarrow Minimum-Cost Path

- Define $\text{cost}(P)$ to be the negative log of its exchange rate. Then the highest rate path is now the lowest cost path.
- But $\text{cost}(P)$ is also the sum of its edge costs:

$$
\text{cost}(P) = -\log \prod_{e \in P} r_e
= \sum_{e \in P} (-\log r_e)
= \sum_{e \in P} c_e
$$

- New problem: find the $s \rightarrow t$ path of minimum cost

Currency Trading as Shortest Path Problem

- Negative edge weights!
- Problem: given a graph with edge weights that may be negative, find shortest $s \rightarrow t$ path.
- Assumption: no cycle C such that $\sum_{e \in C} c_e < 0$. Why?
Bellman-Ford Algorithm

Let \(\text{OPT}(i, v) \) be cost of shortest \(v \rightarrow t \) path \(P \) with at most \(i \) edges

- If \(P \) uses at most \(i - 1 \) edges then \(\text{OPT}(i, v) = \text{OPT}(i - 1, v) \)
- Else \(P = v \rightarrow w \rightarrow t \) where \(w \rightarrow t \) path uses \(i - 1 \) edges, so
 \[
 \text{OPT}(i, v) = \text{c}_{v,w} + \text{OPT}(i - 1, w)
 \]

This gives the recurrence

\[
\text{OPT}(i, v) = \min \left\{ \text{OPT}(i - 1, v), \min_{w \in V} \{ \text{c}_{v,w} + \text{OPT}(i - 1, w) \} \right\}
\]

\(\text{OPT}(0, t) = 0 \)

\(\text{OPT}(0, v) = \infty \) if \(v \neq t \)

Dynamic Programming Approach (False Start)

- Let \(\text{OPT}(v) \) be the cost of the shortest \(v \rightarrow t \) path
- What goes wrong with this?

Clicker

With negative edge lengths, paths can get shorter as we include more edges.

Assuming all cycles have positive cost and \(m > n \), what is the largest possible number of edges in a shortest-length path from \(v \) to \(t \)?

- A. \(n \)
- B. \(m \)
- C. \(n - 1 \)
- D. \(m - 1 \)

Clicker

Suppose there is some iteration \(i \) for which \(M[i, v] = M[i - 1, v] \) for all \(v \). Then

- A. There is a negative cycle in the graph.
- B. We can terminate the algorithm after the \(i \)th iteration, because no future values will change.
- C. There are no negative edge costs in the graph.
- D. The graph is undirected.

Bellman-Ford-Moore: Efficient Implementation

- Store only one column: \(M \) array \(\rightarrow \) \(d \) vector
- Only consider neighbors \(w \) whose value changed
- Keep track of shortest path using successor array

Shortest-Path(\(G, s, t \))

- \(n \) = number of nodes in \(G \)
- Create array \(M \) of size \(n \times n \)
- Set \(M[0, t] = 0 \) and \(M[0, v] = \infty \) for all other \(v \)
- for \(i = 1 \) to \(n - 1 \) do
 - for all nodes \(v \) in any order do
 - Compute \(M[i, v] \) using the recurrence above

Running time? \(O(n^3) \). Better analysis \(O(mn) \). Example
Suppose we remove the assumption that there are no negative cycles, and find that $\text{OPT}(n, v) < \text{OPT}(n-1, v)$ for some node v. Then

A. There is a negative cycle on some $v \to t$ path in the graph.
B. There are no negative edge costs in the graph.
C. There is a negative cycle on some $t \to v$ path in the graph.
D. There are no negative cycles in the graph.

How to detect negative-weight cycles?

- Suppose $\text{OPT}(n, v) < \text{OPT}(n-1, v)$. Then there is a negative cycle on some $v \to t$ path, since shortest paths have at most $n-1$ edges in the absence of negative cycles.
- Suppose $\text{OPT}(n, v) = \text{OPT}(n-1, v)$ for all v. Then the algorithm will not update after the nth iteration $\implies \text{OPT}(n+i, v) = \text{OPT}(n-1, v)$ for all $i \geq 0 \implies$ no negative cycles on any $v \to t$ path.

Fact: there is a negative cycle on some $v \to t$ path iff $\text{OPT}(n, v) < \text{OPT}(n-1, v)$ for some v.

Detect negative cycles by running for one more iteration to see if some value decreases!

Detecting Negative-Weight Cycles

But this only detects cycles on paths to a fixed target node t. How to find a negative-weight cycle anywhere in the graph?

Add a dummy target node.