COMPSCI 311: Introduction to Algorithms
Lecture 16: Dynamic Programming – Shortest Paths
Dan Sheldon
University of Massachusetts Amherst
25 March 2019

Currency Trading

1.03 0.73 0.65 1.16 1.28 0.64

Problem: given directed graph with exchange rate \(r_e \) on edge \(e \), find \(s \to t \) path \(P \) to maximize overall exchange rate \(\prod_{e \in P} r_e \).

Assumption (no arbitrage): no cycles \(C \) such that \(\prod_{e \in C} r_e > 1 \).

From Rates to Costs

Similar, but not the same as finding a shortest path.

Let’s change from rates to costs by transforming the problem.

Let \(c_e = -\log r_e \) be the cost of edge \(e \).

Maximum-Rate Path → Minimum-Cost Path

Define \(\text{cost}(P) \) to be the negative log of its exchange rate. Then the highest rate path is now the lowest cost path.

But \(\text{cost}(P) \) is also the sum of its edge costs:

\[
\text{cost}(P) = -\log \prod_{e \in P} r_e = \sum_{e \in P} (-\log r_e) = \sum_{e \in P} c_e
\]

New problem: find the \(s \to t \) path of minimum cost

Currency Trading as Shortest Path Problem

Negative edge weights!

Problem: given a graph with edge weights that may be negative, find shortest \(s \to t \) path

Assumption: no cycle \(C \) such that \(\sum_{e \in C} c_e < 0 \). Why?
Dynamic Programming Approach (False Start)

- Let $OPT(v)$ be the cost of the shortest $v \rightarrow t$ path
- What goes wrong with this?

Bellman-Ford Algorithm

- Let $OPT(i, v)$ be cost of shortest $v \rightarrow t$ path P with at most i edges
 - If P uses at most $i - 1$ edges then $OPT(i, v) = OPT(i - 1, v)$
 - Else $P = v \rightarrow w \rightarrow t$ where $w \rightarrow t$ path uses $i - 1$ edges
 $$OPT(i, v) = c_{v,w} + OPT(i - 1, w)$$
- Recurrence
 $$OPT(i, v) = \min\left\{OPT(i - 1, v), \min_{w \in V} \{c_{v,w} + OPT(i - 1, w)\}\right\}$$

Clicker Question

With negative edge lengths, paths can get shorter as we include more edges.
Assuming there are no negative cycles, what is the largest possible number of edges in a shortest-length path from v to t?
A. n
B. m
C. $n - 1$
D. $m - 1$

Bellman-Ford

$$OPT(i, v) = \min\left\{OPT(i - 1, v), \min_{w \in V} \{c_{v,w} + OPT(i - 1, w)\}\right\}$$

Subproblems? $OPT(i, v)$ for $i = 1$ to $n - 1$, $v \in V$

Fact: $OPT(i, v)$ for $i = 1$ to $n - 1$, $v \in V$

Shortest-Path(G, s, t)

- $n =$ number of nodes in G
- Create array M of size $n \times n$
- Set $M[0, t] = 0$ and $M[0, v] = \infty$ for all other v
- for $i = 1$ to $n - 1$ do
 - for all nodes v in any order do
 - Compute $M[i, v]$ using the recurrence above

Running time? $O(n^3)$. Better analysis $O(mn)$. Example

Clicker Question

Suppose $M[i, v] = M[i - 1, v]$ for all v. Then
A. There is a negative cycle in the graph.
B. We can terminate the algorithm after the ith iteration, because no future values will change.
C. There are no negative edge costs in the graph.
D. The graph is undirected.

Bellman-Ford-Moore: Efficient Implementation

- Store only one column: M array \rightarrow vector
- Only consider neighbors w whose value changed
- Keep track of shortest path using successor array

 Shortest-Path(G, t)
 - set $d[t] = 0$ and $d[v] = \infty$ for all $v \neq t$
 - set $succ[v] = null$ for all v
 - for $i = 1$ to $n - 1$ do
 - for all nodes $w \neq t$ do
 - if w updated in last iteration then
 - for all $(v, w) \in E$ do
 - if $d[v] > c_{v,w} + d[w]$ then
 - $d[v] = c_{v,w} + d[w]$
 - $succ[v] = w$
 - Space $O(m + n)$, time $O(mn)$
Clicker Question

Suppose we remove the assumption that there are no negative cycles, and find that \(\text{OPT}(n, v) < \text{OPT}(n-1, v) \) for some node \(v \). Then

A. There is a negative cycle on some \(v \rightarrow t \) path in the graph.
B. There are no negative edge costs in the graph.
C. There is a negative cycle on some \(t \rightarrow v \) path in the graph.
D. There are no negative cycles in the graph.

Negative Cycles

- How to detect negative-weight cycles?
 - Suppose \(\text{OPT}(n, v) < \text{OPT}(n-1, v) \). Then there is a negative cycle on some \(v \rightarrow t \) path, since shortest paths have at most \(n-1 \) edges in the absence of negative cycles.
 - Suppose \(\text{OPT}(n, v) = \text{OPT}(n-1, v) \) for all \(v \). Then the algorithm will not update after the \(n \)th iteration
 \[\implies \text{OPT}(n+i, v) = \text{OPT}(n-1, v) \text{ for all } i \geq 0 \]
 \(\implies \) no negative cycles on any \(v \rightarrow t \) path.
 - **Fact:** there is a negative cycle on some \(v \rightarrow t \) path iff \(\text{OPT}(n, v) < \text{OPT}(n-1, v) \) for some \(v \).
 - Detect negative cycles by running for one more iteration to see if some value decreases!

Detecting Negative-Weight Cycles

But this only detects cycles on paths to a fixed target node \(t \). How to find a negative-weight cycle anywhere in the graph?

Add a dummy target node.