COMPSCI 311: Introduction to Algorithms
Lecture 16: Dynamic Programming – Sequence Alignment
Dan Sheldon
University of Massachusetts Amherst

Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm
▶ Flavor: make “first choice”, then recursively solve subproblem
Step 2: Write recurrence for optimal value
Step 3: Design bottom-up iterative algorithm
▶ Weighted interval scheduling: first-choice is binary
▶ Rod-cutting: first choice has \(n \) options
▶ Subset Sum: need to “add a variable” (one more dimension)
▶ Now: similarity between sequences

Sequence Alignment

Example. TAIL vs TALE
For two strings \(X = x_1x_2 \ldots x_m, Y = y_1y_2 \ldots y_n \), an alignment \(M \) is a matching between \(\{1, \ldots, m\} \) and \(\{1, \ldots, n\} \).

\(M \) is valid if
▶ Matching. Each element appears in at most one pair in \(M \).
▶ No crossings. If \((i, j), (k, \ell) \in M\) and \(i < k \), then \(j < \ell \).

Cost of \(M \):
▶ Gap penalty. For each unmatched character, you pay \(\delta \).
▶ Alignment cost. For a match \((i, j)\), you pay \(C(x_i, y_j) \).

\[
cost(M) = \delta(m + n - 2|M|) + \sum_{(i,j) \in M} C(x_i, y_j).
\]

Problem. Given strings \(X, Y \) gap-penalty \(\delta \) and cost matrix \(C \), find valid alignment of minimal cost.

Example 1. TAIL vs TALE, \(\delta = 0.5 \), \(C(x, y) = 1[x \neq y] \).
Example 2. TAIL vs TALE, \(\delta = 10 \), \(C(x, y) = 1[x \neq y] \).
Example Recap

Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$.
TAIL - I not matched (gap)
TA-LE E not matched (gap)

Example 2. TAIL vs TALE, $\delta = 10$, $C(x, y) = 1[x \neq y]$.
TAIL
TALE

Applications

Genomics
- Biologists use genetic similarity to determine evolutionary relationships.
- Genetic similarity = cost of aligning DNA sequences

Spell-checkers, diff program, search engines.
- “prefered”: (0) proffered (1) preferred (2) referred ...

Clicker
Consider the longest common subsequence (LCS) problem: given two strings X and Y, find the longest substring (not necessarily contiguous) common to both. Is LCS a special case of sequence alignment?

A. Yes, with gap penalty $\delta = 0$ and alignment cost $1[x \neq y]$
B. Yes, with gap penalty $\delta = 1$, and alignment cost ∞ if $x \neq y$, else 0
C. Yes, with gap penalty $\delta = 0$, and alignment cost ∞ if $x \neq y$, else 0
D. No

Clicker
Suppose we try to align $X = \text{“banana”}$ with $Y = \text{“ana”}$. Assume $\delta > 0$ and the cost of a match is zero. In an optimal alignment:

A. Y will match the first occurrence of “ana” in X.
B. Y will match the second occurrence of “ana” in X.
C. Y may match any occurrence of “ana” in X.
D. The optimal alignment depends on values of δ and the mismatch cost.
Toward an Algorithm

Let O be optimal alignment. Is pair (m, n) matched in O?

▶ If $(m, n) \in O$ we can align $x_1 x_2 \ldots x_{m-1}$ with $y_1 y_2 \ldots y_{n-1}$.
▶ If $(m, n) \notin O$ then either x_m or y_n must be unmatched (by no crossing).

Value $OPT(m,n)$ of optimal alignment is one of:

▶ $C(x_m, y_n) + OPT(m-1,n-1)$, If (m,n) matched
▶ $\delta + OPT(m-1,n)$, If m unmatched
▶ $\delta + OPT(m,n-1)$, If n unmatched

Recurrence

Let $OPT(i,j)$ be optimal alignment cost of $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$.

$$OPT(i,j) = \min \begin{cases}
C(x_i, y_j) + OPT(i-1,j-1) \\
\delta + OPT(i-1,j) \\
\delta + OPT(i,j-1)
\end{cases}$$

And (i,j) is in optimal alignment \iff first term is the minimum.

Base case?

▶ $OPT(0,j) = j\delta$ align $X = \emptyset$ to $Y = y_1 \ldots y_j$
▶ $OPT(i,0) = i\delta$ similar

Sequence Alignment Pseudocode

align(X,Y)

 Initialize $M[0..m,0..n] = \text{null}$
 $M[i,0] = i\delta$, $M[0,j] = j\delta$ for all i,j

 for $j = 1, \ldots, n$ do
 for $i = 1, \ldots, m$ do
 $v_1 = C(x_i, y_j) + M[i-1,j-1]$
 $v_2 = \delta + M[i-1,j]$
 $v_3 = \delta + M[i,j-1]$
 $M[i,j] \leftarrow \min \{v_1, v_2, v_3\}$

 ▶ Blue = recurrence, rest = DP “boilerplate”
 ▶ Running time? $\Theta(mn)$
 ▶ Example. TALE and TAIL, $\delta = 1$, $C(x,y) = 2 \cdot 1[x \neq y]$

Sequence Alignment

▶ Recovering optimal matching: store each choice, trace back.
▶ Related to shortest path in weighted directed graph.

Graph has $\sim mn$ nodes and $\sim 3mn$ edges.
Can We Use Less Space?

We’ve focused on time complexity, but space matters too!

Two sequences of length 10^5: $mn = 10^{10}$ (10 GB)

```plaintext
for j = 1, ..., n do
    for i = 1, ..., m do
        $v_1 = C(x_i, y_j) + M[i-1, j-1]$
        $v_2 = \delta + M[i-1, j]$
        $v_3 = \delta + M[i, j-1]$
        $M[i, j] \leftarrow \min \{v_1, v_2, v_3\}$
```

Can we save space?

- Computing column $M[., j]$ only needs $M[., j-1]$
 \implies keep just two columns (current, previous)
 \implies linear space $O(m+n)$
- But: can only compute cost, not recover alignment!

Sequence Alignment in Linear Space

Hirschberg’s algorithm: clever combination of DP and divide-and-conquer

Goal: find shortest path from $(0, 0) \rightarrow (m, n)$

Board work

1. $\text{OPT}(i, j) = f(i, j) =$ length of shortest path from $(0, 0) \rightarrow (i, j)$
2. For any j, can compute $f(., j)$ in $O(mn)$ time and $O(m+n)$ space
3. Let $g(i, j) =$ length of shortest path from $(i, j) \rightarrow (m, n)$
4. For any j, can compute $g(., j)$ in $O(mn)$ time and $O(m+n)$ space
5. **Key idea:** find one node on shortest path. Fix $j = n/2$ and find q to maximize $f(q, n/2) + g(q, n/2)$
 \implies node $(q, n/2)$ is on shortest path.
6. Recursively find shortest-path from $(0, 0) \rightarrow (q, n/2)$
7. Recursively find shortest-path from $(q, n/2) \rightarrow (m, n)$
8. Time $T(m, n) = T(q, n/2) + T(m - q, n/2) + O(mn)$. Solves to $O(mn)$ (recursion tree)

Space still $O(m+n)$.

Clicker

Dijkstra’s algorithm runs in $O(|E| \log |V|) \implies O(mn \log(mn))$ time for a graph with $\Theta(mn)$ nodes and edges. Sequence alignment takes only $O(mn)$ time. What can we conclude?

A. We could use dynamic programming to compute shortest paths in any graph asymptotically faster than Dijkstra’s algorithm.
B. By the multiplicativity property of big-O, the $O(|V|)$ factor is dominated by $|E|$, so Dijkstra’s running time is $O(|E|) = O(mn)$.
C. The graph in sequence alignment is a special case where we can compute shortest paths faster.
D. Dijkstra’s algorithm only works on undirected graphs.

Hirschberg’s algorithm: clever combination of DP and divide-and-conquer

Goal: find shortest path from $(0, 0) \rightarrow (m, n)$.

Board work

1. $\text{OPT}(i, j) = f(i, j) =$ length of shortest path from $(0, 0) \rightarrow (i, j)$
2. For any j, can compute $f(., j)$ in $O(mn)$ time and $O(m+n)$ space
3. Let $g(i, j) =$ length of shortest path from $(i, j) \rightarrow (m, n)$
4. For any j, can compute $g(., j)$ in $O(mn)$ time and $O(m+n)$ space
5. **Key idea:** find one node on shortest path. Fix $j = n/2$ and find q to maximize $f(q, n/2) + g(q, n/2)$
 \implies node $(q, n/2)$ is on shortest path.
6. Recursively find shortest-path from $(0, 0) \rightarrow (q, n/2)$
7. Recursively find shortest-path from $(q, n/2) \rightarrow (m, n)$
8. Time $T(m, n) = T(q, n/2) + T(m - q, n/2) + O(mn)$. Solves to $O(mn)$ (recursion tree)

Space still $O(m+n)$.

Conquer. Recursively compute optimal alignment in each piece.

Divide. Find index q that minimizes $f(q, n/2) + g(q, n/2)$; save node i-j as part of solution.

Slide credit: Kevin Wayne / Pearson
Sequence Alignment: Summary

Align sequences \(X, Y\)
- Binary choice
- Recurse on prefixes
- \(O(mn)\) time
- \(O(m + n)\) space: more subtle
 - DP + Divide and Conquer

More sequences:
- RNA secondary structure
- match max. # of bases
- problem substructure:
 - over intervals

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the sequence; thin lines indicate pairs of elements that are matched.

The Problem
As one learns in introductory biology classes, Watson and Crick posited that double-stranded DNA is “zipped” together by complementary base-pairing. Each strand of DNA can be viewed as a string of bases, where each base is drawn from the set \(\{A, C, G, T\}\). The bases \(A\) and \(T\) pair with each other, and the bases \(C\) and \(G\) pair with each other; it is these \(A\)-\(T\) and \(C\)-\(G\) pairings that hold the two strands together.

Now, single-stranded RNA molecules are key components in many of the processes that go on inside a cell, and they follow more or less the same structural principles. However, unlike double-stranded DNA, there’s no “second strand” for the RNA to stick to; so it tends to loop back and form base pairs with itself, resulting in interesting shapes like the one depicted in Figure 6.13. The set of pairs (and resulting shape) formed by the RNA molecule through this process is called the secondary structure, and understanding the secondary structure is essential for understanding the behavior of the molecule.

2 Adenine, cytosine, guanine, and thymine, the four basic units of DNA.