Divide and Conquer: Recipe

- Divide problem into several parts
- Solve each part recursively
- Combine solutions to sub-problems into overall solution

Learning Goals

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulate problem</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Design algorithm</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Prove correctness</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Analyze running time</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Specific algorithms</td>
<td>Dijkstra, MST</td>
<td></td>
</tr>
</tbody>
</table>

Motivating Problem: Maximum Subsequence Sum (MSS)

- **Input**: array A of n numbers, e.g.

 $A = 4, -3, 5, -2, -1, 2, 6, -2$

- **Find**: value of the largest *subsequence sum*

 - (empty subsequence allowed and has sum zero)
 - MSS in example? 11 (first 7 elements)

Clicker

Which of the following is true for a maximum-sum subsequence?

A. It has more positive than negative numbers
B. It does not start or end with a negative number
C. Any maximal sequence of negative numbers is bordered by a sequence of positive numbers with sum larger in absolute value

A Simple MSS Algorithm

Brute force in $\Theta(n^2)$ (c.f K&T Chapter 2, Exercise 6)

MSS(A)

- Initialize all entries of $n \times n$ array B to zero
- $\text{for } i = 1 \text{ to } n \text{ do}$
 - $\text{sum } = 0$
 - $\text{for } j = i \text{ to } n \text{ do}$
 - Compute sum of $A[i] \ldots A[j]$
 - $B[i,j] = \text{sum}$
 - Return maximum value among all $B[i,j]$

Running time? $O(n^2)$. Can we do better?
Divide-and-conquer for MSS

- Recursive solution for MSS

- Idea:
 - Find MSS \(L \) in left half of array
 - Find MSS \(R \) in right half of array
 - Find MSS \(M \) for sequence that crosses the midpoint

\[
A = \begin{cases} 4, -3, 5, -2, -1, 2, 6 & \text{for } i = \text{mid} + 1 \text{ to right} \\ -2 & \text{for } i = 1 \text{ to mid} \end{cases}
\]

- Return \(\max(L, R, M) \)
- Change one entry to make MSS-=R. \(-2 \rightarrow -10\)
- How to find \(L, R, M \)?

Recurrence

- Recurrence
 \[T(n) = 2T(n/2) + O(n) \]
 \[T(1) = O(1) \]
- First, let’s use definition of Big-O:
 \[T(n) \leq 2T(n/2) + cn \]
 \[T(1) \leq c \]
- Running time?
 - Let \(T(n) \) be running time of MSS on array of size \(n \)
 - Two recursive calls on arrays of size \(n/2 \): \(2T(n/2) \)
 - Work outside of recursive calls: \(O(n) \)
 - Running time
 \[T(n) = 2T(n/2) + O(n) \]

MSS(A, left, right)

\[
\begin{align*}
\text{mid} &= \lfloor \text{left} + \text{right} \rfloor / 2 \\
L &= \text{MSS}(A, \text{left}, \text{mid}) \\
R &= \text{MSS}(A, \text{mid+1}, \text{right}) \\
\text{Set} \ q &= 0 \text{ and } L' = 0 \\
\text{for } i &= \text{mid down to } 1 \text{ do} \\
& \quad \text{sum} += A[i] \\
& \quad L' = \max(L', \text{sum}) \\
\text{Set} \ q &= 0 \text{ and } R' = 0 \\
\text{for } i &= \text{mid+1 to right} \text{ do} \\
& \quad \text{sum} += A[i] \\
& \quad R' = \max(R', \text{sum}) \\
M &= L' + R' \\
\text{return max}(L, R, M)
\end{align*}
\]

Recurrence

- Recurrence
 \[T(n) = 2T(n/2) + O(n) \]
 \[T(1) = O(1) \]
- sequence \(T(0), T(1), T(2), \ldots \)
- \(T(n) \) defined in terms of smaller values
- For running time, choose any convenient base case:
 \(T(1) = O(1), T(2) = O(1) \)

Goal: “solve” the recurrence = find simple expression for \(T(n) \) for all \(n \)

Clicker

- Recurrence
 \[T(n) = 2T(n/2) + O(n) \]
 \[T(1) = O(1) \]
- Why is it OK to use the same value of \(c \) in both instances of the big-O definition?
 A. It’s not OK. You just took a shortcut. (By the way, you forgot about \(n_0 \).)
 B. Take \(c = \min(c_1, c_2) \) where \(c_1 \) and \(c_2 \) are the values from each instance.
 C. Take \(c = \max(c_1, c_2) \) where \(c_1 \) and \(c_2 \) are the values from each instance.
Recurrence

- Same recurrence with change of variable
 \[T(m) \leq 2T(m/2) + cm, \quad m \geq 2 \]
 \[T(1) \leq c \]
 - no difference, but sometimes helpful conceptually
 - \(n \) = original input size, \(m \) = generic input size
- Three approaches to solve it
 1. Unrolling
 2. Recursion tree (another version of unrolling)
 3. Guess and verify (proof by induction)

Recurrence Solving (1): Unrolling

- **Idea 1:** “unroll” the recurrence
 \[T(n) \leq 2T(n/2) + cn \]
 \[m = n \]
 \[\leq 2 \left[2T(n/4) + c(n/2) \right] + cn \]
 \[m = n/2 \]
 \[= 4T(n/4) + 2cn \]
 \[m = n/4 \]
 \[\leq 4 \left[2T(n/8) + c(n/4) \right] + 2cn \]
 \[\leq \ldots \]
 \[\leq nT(1) + \log_2(n) \cdot cn = O(n \log n) \]

Recurrence Solving (2): Recursion Tree

- Idea 1: “unroll” the recurrence
- **Idea 2:** Recursion tree
- **Idea 3:** Guess and verify (proof by induction)

Recurrence Solving (3): Guess and Verify

- **Idea 1:** “unroll” the recurrence
- **Idea 2:** Recursion tree
- **Idea 3:** Guess and verify (proof by induction)

Clicker

Suppose we have the recurrence \(T(n) = T(n/2) + T(n/3) \). What do we get after two unrollings?

A. \(T(n/4) + T(n/9) \)
B. \(T(n/4) + 2T(n/6) + T(n/9) \)
C. \(2T(n/6) \)
D. \(T(n/4) + T(n/6) + T(n/9) \)

Recurrence Solving (2): Recursion Tree

- **Idea 1:** “unroll” the recurrence
- **Idea 2:** Recursion tree
- **Idea 3:** Guess and verify (proof by induction)
- **Conclusion:** \(T(n) \leq cn \log n \)

Induction step

Strong induction:
- Assume \(T(m) \leq c \cdot m \log m \) for all \(m < n \)
- Prove \(T(n) \leq c \cdot n \log n \)

\[T(n) \leq 2T(n/2) + cn \]
\[\leq 2 (c(n/2) \log(n/2) + cn) \]
\[\leq 2c(n/2) \log(n/2) + c2n \]
\[= cn(\log n - 1) + cn \]
\[= cn \log n \]
Summary

Three approaches to solve first recurrence:

1. Unrolling ✓
2. Recursion tree ✓
3. Guess and verify (proof by induction) ✓

Next: other recurrences!