Goals

» Introduce the minimum spanning tree problem

Network Design Problem

COS‘*’(—[‘):
(E2¢E3¢s +77

e=(u,v)

¢(a,v)
» Given: an undirected graph G = (V, E) with edge costs (weights) ¢, > 0. Assume
for now that all edge weights are distinct.
» Find: subset of edges T' C FE such that (V,T') is connected and the total cost of
edges in T is as small as possible

Minimum Spanning Tree Problem

» Call T C E a spanning tree if (V,T) is a tree (connected, no cycles)
» Claim: in a minimum-cost solution, T is a spanning tree.
> Therefore, we call this the minimum spanning tree (MST) problem.

Goals

» State and prove the cut property for minimum spanning trees

Cuts

> A key to understanding MSTs is a concept called a cut.

» Definition: A cut is a partition of the nodes into two nonempty subsets (S, V '\ S).

» Definition: Edge e = (v, w) crosses the cut if v € S and w e V' \ S.

Cut Property

» Theorem (cut property): Let e = (v, w) be the minimum-weight edge crossing
cut (S,V'\ 9) in G.
Then e belongs to every minimum spanning tree of G.

» Terminology:

> e is the cheapest or lightest edge across the cut
> It is safe to add e to a MST

> We will see two different greedy algorithms based on the cut property: Kruskal's
algorithm and Prim’s algorithm.

Proof of Cut Property

> Let e = (v,w) be the min-wt edge across cut (S,V '\ S) and suppose for
contradiction that 7" is MST but does not include e

Proof of Cut Property

» Let e = (v,w) be the min-wt edge across cut (S,V '\ S) and suppose for
contradiction that 1" is MST but does not include e
There is a path from v to w in T
Let ¢/ = (v/,w’) be the first edge on this path that crosses the cut
Let T/ =T + {e} — {¢'}
T’ is still a spanning tree:
» Connected: any path in 7" that needed ¢’ can be routed via e instead
» No cycles: adding e creates one cycle, removing ¢’ destroys it

vyvyVvYy

» But since e is the lightest edge from S to V'\ S,

w(T") =w(T) —w(e') +wle) < w(T)
wiD— 4 + 2

T % nk MST

Goals

» Use cut property to derive Kruskal's algorithm and prove it is correct

Kruskal's algorithm

» Armed with the cut property, how can we find a MST?

> Kruskal’s algorithm: qda edoes (n ordec o‘P Welqb\'l' as lo
b doec "ngt create o cycle

Y

Kruskal's algorithm

Assume edges are numbered e =1,...,m
Sort edges by weight so ¢; <o < ... <¢p,
Initialize T = {}

fore=1tom do

if adding e to T" does not form a cycle then
T=TU{e}

Exercise: argue correctness (use cut property)

Kruskal's algorithm proof

» Let T be partial spanning tree just before adding e = (u,v)

VNS

» What cut can we use to prove that e belongs to MST?

Kruskal's algorithm proof

» Let T be partial spanning tree just before adding e = (u,v)

> Let S be the connected component of 1" that contains u

> e crosses (S, V' \ S), otherwise adding e would create cycle

» No other edge crossing (S,V \ S) has been considered yet; it could have been
added without creating a cycle

» — e is the cheapest edge across (S,V \ S)

» — e belongs to every MST (cut property)

» Every edge added belongs to the MST

> By design, the algorithm creates no cycles and doesn't stop until (V,T) is

connected
» — T is MST

Goals

» Use cut property to derive Prim's algorithm and prove it is correct

Prim's Algorithm

» What if we want to grow a tree as a single connected component starting from
some vertex s?

» Prim's algorithm: [e{ S be dhe cowmpon et (tmh"znm.s K AO{J
cheo\pcs{- elﬁe 'P('d‘/\ S b \/\g

Prim’'s Algorithm

Initialize T = {}

Initialize S = {s}

while |S| < n do
Let e = (u,v) be the minimum-cost edge from S to V' — 5
T=TU{e}
S=SuU{v}

Correctness? wge cuk PR)QU“P\,

Prim’s algorithm proof

Let T be the partial spanning tree just before adding edge e

v

> Let S be the connected component containing s
> By construction, e is the cheapest edge across the cut (S,V —5)
> Therefore, e belongs to every MST

» So, every edge added belongs to the MST.

The algorithm creates no cycles and does not stop until the graph is connected,
therefore, the final output is a spanning tree.

v

v

The final output is a minimum-spanning tree.

Goals

> Remove distinctness assumption

» Give implementation of Prim’s algorithm and analyze its running-time

Remove Distinctness Assumption?

5.0000 9

5 6000..-02

5.600-...53

» Hack: break ties by perturbing each edge weight by a tiny unique amount.
> Implementation: break ties in an arbitrary but consistent way (e.g., lexicographic)
> (There is a more “elegant” way that requires a stronger cut property.)

Implementation of Prim's algorithm

Initialize T = {}

Initialize S = {s}

while 7" is not a spanning tree do
Let e = (u,v) be the minimum-cost edge from Sto V — §
T=TU{e}
S=5U {\5} macle v attached”

What does this remind you of 7

Prim Implementation

Set A=V > Unattached nodes
Set a(v) = oo for all nodes > Attachment cost
Set a(s) =0

Set edgeTo(s) = null
while A not empty do
Extract node v € A with smallest a(v) value
Set T =T UedgeTo(v)
for all edges (v, w) where w € A do
if c¢(v,w) < a(w) then
a(w) = c(v,w)
edgeTo(w) = (v, w)

> Attachment edge
> Nodes left to attach

> Cheaper edge to w?

assuwme M Zz2N—|

Nearly identical to Dijkstra. Priority queue for A — O(mlogn)

D (’chsm O(meny 107 n)

Goals

> Describe implementation of Kruskal’s algorithm

Kruskal Implementation?

Sort edges by weight so ¢; <o < ... <c¢p
Initialize T = {}
for e =1 to m do

if adding e = (u,v) to T does not form a cycle then <n n

T=TU{e} O(ﬂ)

ldeas? wse BFS o,
@<0 U

Oliedes T + rodes of 1)

O(mn)

3

Kruskal Implementation: Union-Find MO““C{O
O\CJ/J

Ow
Idea: use clever data structure to maintain connected components of growing spanning
tree. Should support:

» find(v): return name of set containing v
> Union(A4, B): merge two sets
for e =1 to m do
Let u and v be endpoints of e O(()
if find(u) = find(v) then ((logn)
T'=Tu{e} o))
Union(find(u), find(v)) 1)

> Not in same component?

> Merge components

Goal: union = O(1), find = O(logn) = O(mlogn) overall

Goals

» Describe union-find data structure

Union-Find Data Structure fiad(J)
. Wain (A, &)

» Each set elects a representative to act as the “name” of the set

» Nodes point to their representative
» Initially, all nodes point to themself

Union-Find Data Structure

Union(e, f) 0 ei’e
nion(e, =)

Union(c, d)
Union(d, f)
Union(b, f)
Union(a, f)

Time for union? O (l>

vVvyvYyYVvyy

v

Union-Find Data Structure

o,
?%K@ Fid()=F

©

» Union(a, f): which pointer should be updated?
» Convention: swaller sef updates (15 potafelr

» Time for find? Praear{—‘;cncv] = Japfh o +ee

Union-Find Data Structure

Claim: let d = depth and k = # nodes in set. Then d < log, (k).
» — find is O(logn)

Equivalent claim: k > 29

Proof: by induction. @

Base case: d=0,k=1 Vv

Induction Step

k.2

vy

v

v

d=d +I
o %g\ -
e 2 ® kz Xk
a2 O/NO (i)

Consider union of sets of size k;, < kr with depths d;, and dp
Case 1: depth same as right subtree; size of set increases
> d= dR
> k:k[,+kRZkR22dR:2d
Case 2: depth one more than left subtree; size of set at least doubles
» d=d;+1
> k=Fkp+kr>2k, >2-2% =20+l = 9d
In both cases, k > 2¢ v

d 2los, (&) = Fed is Ollogt)

Union-Find Wrap-Up

v

Union is O(1): update one pointer
Find is O(logn): follow at most logy(n) pointers to find representative of set
m union/find operations takes O(mlogn) time

v

v

> Better: path compression = find in nearly constant time

fi{j@

