
Goals

I Introduce the minimum spanning tree problem

Network Design Problem

I Given: an undirected graph G = (V,E) with edge costs (weights) ce > 0. Assume
for now that all edge weights are distinct.

I Find: subset of edges T ™ E such that (V, T) is connected and the total cost of
edges in T is as small as possible

Minimum Spanning Tree Problem

I Call T ™ E a spanning tree if (V, T) is a tree (connected, no cycles)
I Claim: in a minimum-cost solution, T is a spanning tree.
I Therefore, we call this the minimum spanning tree (MST) problem.

Goals

I State and prove the cut property for minimum spanning trees

Cuts

I A key to understanding MSTs is a concept called a cut.

I Definition: A cut is a partition of the nodes into two nonempty subsets (S, V \ S).
I Definition: Edge e = (v, w) crosses the cut if v œ S and w œ V \ S.

Cut Property

I Theorem (cut property): Let e = (v, w) be the minimum-weight edge crossing
cut (S, V \ S) in G.
Then e belongs to every minimum spanning tree of G.

I Terminology:
I e is the cheapest or lightest edge across the cut
I It is safe to add e to a MST

I We will see two di�erent greedy algorithms based on the cut property: Kruskal’s
algorithm and Prim’s algorithm.

Proof of Cut Property
I Let e = (v, w) be the min-wt edge across cut (S, V \ S) and suppose for

contradiction that T is MST but does not include e
146 Chapter 4 Greedy Algorithms

S

v w

h

e�

e

f

v� w�

e can be swapped for e�.

Figure 4.10 Swapping the edge e for the edge e� in the spanning tree T , as described in
the proof of (4.17).

The problem with this argument is not in the claim that f exists, or that
T � {f } � {e} is cheaper than T. The dif�culty is that T � {f } � {e} may not be
a spanning tree, as shown by the example of the edge f in Figure 4.10. The
point is that we can’t prove (4.17) by simply picking any edge in T that crosses
from S to V � S; some care must be taken to �nd the right one.

The Optimality of Kruskal’s and Prim’s Algorithms We can now easily
prove the optimality of both Kruskal’s Algorithm and Prim’s Algorithm. The
point is that both algorithms only include an edge when it is justi�ed by the
Cut Property (4.17).

(4.18) Kruskal’s Algorithm produces a minimum spanning tree of G.

Proof. Consider any edge e = (v, w) added by Kruskal’s Algorithm, and let
S be the set of all nodes to which v has a path at the moment just before
e is added. Clearly v � S, but w �� S, since adding e does not create a cycle.
Moreover, no edge from S to V � S has been encountered yet, since any such
edge could have been added without creating a cycle, and hence would have
been added by Kruskal’s Algorithm. Thus e is the cheapest edge with one end
in S and the other in V � S, and so by (4.17) it belongs to every minimum
spanning tree.

Proof of Cut Property

I Let e = (v, w) be the min-wt edge across cut (S, V \ S) and suppose for
contradiction that T is MST but does not include e

I There is a path from v to w in T
I Let eÕ = (vÕ, wÕ) be the first edge on this path that crosses the cut
I Let T Õ = T + {e} ≠ {eÕ}
I T Õ is still a spanning tree:

I Connected: any path in T that needed eÕ can be routed via e instead
I No cycles: adding e creates one cycle, removing eÕ destroys it

I But since e is the lightest edge from S to V \ S,

w(T Õ) = w(T) ≠ w(eÕ) + w(e) < w(T)

Goals

I Use cut property to derive Kruskal’s algorithm and prove it is correct

Kruskal’s algorithm
I Armed with the cut property, how can we find a MST?

I Kruskal’s algorithm:

Kruskal’s algorithm

Assume edges are numbered e = 1, . . . ,m
Sort edges by weight so c1 Æ c2 Æ . . . Æ cm
Initialize T = {}
for e = 1 to m do

if adding e to T does not form a cycle then
T = T fi {e}

Exercise: argue correctness (use cut property)

Kruskal’s algorithm proof
I Let T be partial spanning tree just before adding e = (u, v)

I What cut can we use to prove that e belongs to MST?

Kruskal’s algorithm proof

I Let T be partial spanning tree just before adding e = (u, v)
I Let S be the connected component of T that contains u
I e crosses (S, V \ S), otherwise adding e would create cycle
I No other edge crossing (S, V \ S) has been considered yet; it could have been

added without creating a cycle
I =∆ e is the cheapest edge across (S, V \ S)
I =∆ e belongs to every MST (cut property)

I Every edge added belongs to the MST
I By design, the algorithm creates no cycles and doesn’t stop until (V, T) is

connected
I =∆ T is MST

Goals

I Use cut property to derive Prim’s algorithm and prove it is correct

Prim’s Algorithm
I What if we want to grow a tree as a single connected component starting from

some vertex s?

I Prim’s algorithm:

Prim’s Algorithm

Initialize T = {}
Initialize S = {s}
while |S| < n do

Let e = (u, v) be the minimum-cost edge from S to V ≠ S
T = T fi {e}
S = S fi {v}

Correctness?

Prim’s algorithm proof

I Let T be the partial spanning tree just before adding edge e
I Let S be the connected component containing s
I By construction, e is the cheapest edge across the cut (S, V ≠ S)
I Therefore, e belongs to every MST

I So, every edge added belongs to the MST.
I The algorithm creates no cycles and does not stop until the graph is connected,

therefore, the final output is a spanning tree.
I The final output is a minimum-spanning tree.

Goals

I Remove distinctness assumption
I Give implementation of Prim’s algorithm and analyze its running-time

Remove Distinctness Assumption?

I Hack: break ties by perturbing each edge weight by a tiny unique amount.
I Implementation: break ties in an arbitrary but consistent way (e.g., lexicographic)
I (There is a more “elegant” way that requires a stronger cut property.)

Implementation of Prim’s algorithm

Initialize T = {}
Initialize S = {s}
while T is not a spanning tree do

Let e = (u, v) be the minimum-cost edge from S to V ≠ S
T = T fi {e}
S = S fi {s}

What does this remind you of?

Prim Implementation

Set A = V Û Unattached nodes
Set a(v) = Œ for all nodes Û Attachment cost
Set a(s) = 0
Set edgeTo(s) = null Û Attachment edge
while A not empty do Û Nodes left to attach

Extract node v œ A with smallest a(v) value
Set T = T fi edgeTo(v)
for all edges (v, w) where w œ A do

if c(v, w) < a(w) then Û Cheaper edge to w?
a(w) = c(v, w)
edgeTo(w) = (v, w)

Nearly identical to Dijkstra. Priority queue for A æ O(m logn)

Goals

I Describe implementation of Kruskal’s algorithm

Kruskal Implementation?

Sort edges by weight so c1 Æ c2 Æ . . . Æ cm
Initialize T = {}
for e = 1 to m do

if adding e = (u, v) to T does not form a cycle then
T = T fi {e}

Ideas?

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components of growing spanning
tree. Should support:

I find(v): return name of set containing v
I Union(A, B): merge two sets
for e = 1 to m do

Let u and v be endpoints of e
if find(u) != find(v) then Û Not in same component?

T = T fi {e}
Union(find(u), find(v)) Û Merge components

Goal: union = O(1), find = O(logn) =∆ O(m logn) overall

Goals

I Describe union-find data structure

Union-Find Data Structure

I Each set elects a representative to act as the “name” of the set
I Nodes point to their representative
I Initially, all nodes point to themself

Union-Find Data Structure

I Union(e, f)
I Union(c, d)
I Union(d, f)
I Union(b, f)
I Union(a, f)
I Time for union?

Union-Find Data Structure

I Union(a, f): which pointer should be updated?
I Convention:
I Time for find?

Union-Find Data Structure

Claim: let d = depth and k = # nodes in set. Then d Æ log2(k).
I =∆ find is O(logn)

Equivalent claim: k Ø 2d

Proof: by induction.

Base case: d = 0, k = 1 X

Induction Step

I Consider union of sets of size kL < kR with depths dL and dR
I Case 1: depth same as right subtree; size of set increases

I d = dR
I k = kL + kR Ø kR Ø 2dR = 2d

I Case 2: depth one more than left subtree; size of set at least doubles
I d = dL + 1
I k = kL + kR Ø 2kL Ø 2 · 2dL = 2dL+1 = 2d

I In both cases, k Ø 2d X

Union-Find Wrap-Up

I Union is O(1): update one pointer
I Find is O(logn): follow at most log2(n) pointers to find representative of set
I m union/find operations takes O(m logn) time
I Better: path compression ∆ find in nearly constant time

