Goals

- Introduce the minimum spanning tree problem

Network Design Problem

- Given: an undirected graph \(G = (V, E) \) with edge costs (weights) \(c_e > 0 \). Assume for now that all edge weights are distinct.
- Find: subset of edges \(T \subseteq E \) such that \((V, T) \) is connected and the total cost of edges in \(T \) is as small as possible.

Minimum Spanning Tree Problem

- Call \(T \subseteq E \) a spanning tree if \((V, T) \) is a tree (connected, no cycles).
- Claim: in a minimum-cost solution, \(T \) is a spanning tree.
- Therefore, we call this the minimum spanning tree (MST) problem.

Goals

- State and prove the cut property for minimum spanning trees
Chapter 4 Greedy Algorithms

Cuts

- A key to understanding MSTs is a concept called a cut.

Definition: A cut is a partition of the nodes into two nonempty subsets \((S, V \setminus S)\).

Definition: Edge \(e = (v, w)\) crosses the cut if \(v \in S\) and \(w \in V \setminus S\).

Proof of Cut Property

- Let \(e = (v, w)\) be the min-wt edge across cut \((S, V \setminus S)\) and suppose for contradiction that \(T\) is MST but does not include \(e\).

Cut Property

- **Theorem (cut property):** Let \(e = (v, w)\) be the minimum-weight edge crossing cut \((S, V \setminus S)\) in \(G\). Then \(e\) belongs to every minimum spanning tree of \(G\).

 - **Terminology:**
 - \(e\) is the cheapest or lightest edge across the cut
 - It is safe to add \(e\) to a MST
 - We will see two different greedy algorithms based on the cut property: Kruskal’s algorithm and Prim’s algorithm.

Proof of Cut Property

- Let \(e = (v, w)\) be the min-wt edge across cut \((S, V \setminus S)\) and suppose for contradiction that \(T\) is MST but does not include \(e\).

 - There is a path from \(v\) to \(w\) in \(T\).
 - Let \(e' = (v', w')\) be the first edge on this path that crosses the cut.
 - Let \(T' = T + \{e\} - \{e'\}\).
 - \(T'\) is still a spanning tree:
 - Connected: any path in \(T\) that needed \(e'\) can be routed via \(e\) instead.
 - No cycles: adding \(e\) creates one cycle, removing \(e'\) destroys it.
 - But since \(e\) is the lightest edge from \(S\) to \(V \setminus S\),
 \[
 w(T') = w(T) - w(e') + w(e) < w(T)
 \]

 \(T\) is not MST.
Goals

- Use cut property to derive Kruskal's algorithm and prove it is correct

Kruskal's algorithm

Assume edges are numbered $e = 1, \ldots, m$
Sort edges by weight so $c_1 \leq c_2 \leq \ldots \leq c_m$
Initialize $T = \{}$
for $e = 1$ to m do
 if adding e to T does not form a cycle then
 $T = T \cup \{e\}$
Exercise: argue correctness (use cut property)

Kruskal's algorithm proof

- Let T be partial spanning tree just before adding $e = (u, v)$
- What cut can we use to prove that e belongs to MST?
Kruskal’s algorithm proof
- Let T be partial spanning tree just before adding $e = (u, v)$
- Let S be the connected component of T that contains u
- e crosses $(S, V \setminus S)$, otherwise adding e would create cycle
- No other edge crossing $(S, V \setminus S)$ has been considered yet; it could have been added without creating a cycle
- e is the cheapest edge across $(S, V \setminus S)$
- e belongs to every MST (cut property)
- Every edge added belongs to the MST
- By design, the algorithm creates no cycles and doesn’t stop until (V, T) is connected
- T is MST

Goals
- Use cut property to derive Prim’s algorithm and prove it is correct

Prim’s Algorithm
- What if we want to grow a tree as a single connected component starting from some vertex s?

Prim’s algorithm: Let S be the component containing s. Add cheapest edge from S to $V \setminus S.$

Prim’s Algorithm
- Initialize $T = \{\}$
- Initialize $S = \{s\}$
- while $|S| < n$
 - Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$
 - $T = T \cup \{e\}$
 - $S = S \cup \{v\}$
- Correctness? use cut property
Prim’s algorithm proof

- Let T be the partial spanning tree just before adding edge e
 - Let S be the connected component containing s
 - By construction, e is the cheapest edge across the cut $(S, V - S)$
 - Therefore, e belongs to every MST
- So, every edge added belongs to the MST.
- The algorithm creates no cycles and does not stop until the graph is connected, therefore, the final output is a spanning tree.
- The final output is a minimum-spanning tree.

Goals

- Remove distinctness assumption
- Give implementation of Prim’s algorithm and analyze its running-time

Remove Distinctness Assumption?

- Hack: break ties by perturbing each edge weight by a tiny unique amount.
- Implementation: break ties in an arbitrary but consistent way (e.g., lexicographic)
- (There is a more "elegant" way that requires a stronger cut property.)

Implementation of Prim’s algorithm

Initialize $T = \{\}$
Initialize $S = \{s\}$

while T is not a spanning tree do
 Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$
 $T = T \cup \{e\}$
 $S = S \cup \{v\}$
 mark v "attached"

What does this remind you of?
Prim Implementation

Set $A = V$
Set $a(v) = \infty$ for all nodes
Set $a(s) = 0$
Set $\text{edgeTo}(s) = \text{null}$

while A not empty do

extract node $v \in A$ with smallest $a(v)$ value

Set $T = T \cup \text{edgeTo}(v)$

for all edges (v, w) where $w \in A$ do

if $c(v, w) < a(w)$ then

$a(w) = c(v, w)$

$\text{edgeTo}(w) = (v, w)$

end if

end for

end while

Nearly identical to Dijkstra. Priority queue for $A \Rightarrow O(m \log n)$

Goals

- Describe implementation of Kruskal's algorithm

Kruskal Implementation?

Sort edges by weight so $c_1 \leq c_2 \leq \ldots \leq c_m$

Initialize $T = \{}$

for $e = 1$ to m do

if adding $e = (u, v)$ to T does not form a cycle then

$T = T \cup \{e\}$

end if

end for

Ideas? use BFS

$O(mn)$

$O(\text{edges of } T + \text{nodes of } T)$

$\Rightarrow O(n)$

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components of growing spanning tree. Should support:

- $\text{find}(v)$: return name of set containing v
- $\text{Union}(A, B)$: merge two sets

for $e = 1$ to m do

Let u and v be endpoints of e

if $\text{find}(u) \neq \text{find}(v)$ then

$T = T \cup \{e\}$

$\Rightarrow O(1)$

if $\text{find}(u) = \text{find}(v)$ then

$\text{Union}(\text{find}(u), \text{find}(v))$

$\Rightarrow O(1)$

end if

end if

end for

Goal: union = $O(1)$, find = $O(\log n)$ $\Rightarrow O(m \log n)$ overall
Goals

- Describe union-find data structure

Union-Find Data Structure

- Each set elects a representative to act as the “name” of the set
- Nodes point to their representative
- Initially, all nodes point to themselves

Union(e, f)
Union(c, d)
Union(d, f)
Union(b, f)
Union(a, f)

Time for union?

- Union(a, f): which pointer should be updated?
- **Convention**: smaller set updates its pointer
- Time for find? proportional to depth of tree
Union-Find Data Structure

Claim: let \(d = \text{depth} \) and \(k = \# \text{ nodes in set} \). Then \(d \leq \log_2(k) \).

\[\implies \text{find is } O(\log n) \]

Equivalent claim: \(k \geq 2^d \)

Proof: by induction.

Base case: \(d = 0, k = 1 \)

Induction Step

Consider union of sets of size \(k_L < k_R \) with depths \(d_L \) and \(d_R \)

1. Case 1: depth same as right subtree; size of set increases
 \[d = d_R \]
 \[k = k_L + k_R \geq 2^{d_R} = 2^d \]

2. Case 2: depth one more than left subtree; size of set at least doubles
 \[d = d_L + 1 \]
 \[k = k_L + k_R \geq 2k_L \geq 2 \cdot 2^{d_L} = 2^{d_L+1} = 2^d \]

In both cases, \(k \geq 2^d \)

\[d \leq \log_2(k) \implies \text{find is } O(\log n) \]

Union-Find Wrap-Up

- Union is \(O(1) \): update one pointer
- Find is \(O(\log n) \): follow at most \(\log_2(n) \) pointers to find representative of set
- \(m \) union/find operations takes \(O(m \log n) \) time
- Better: path compression \(\Rightarrow \) find in nearly constant time