

Kruskal's algorithm proof	Goals
 Let T be partial spanning tree just before adding e = (u, v) Let S be the connected component of T that contains u e crosses (S, V \ S), otherwise adding e would create cycle No other edge crossing (S, V \ S) has been considered yet; it could have been added without creating a cycle ⇒ e is the cheapest edge across (S, V \ S) ⇒ e belongs to every MST (cut property) Every edge added belongs to the MST By design, the algorithm creates no cycles and doesn't stop until (V, T) is connected ⇒ T is MST 	• Use cut property to derive Prim's algorithm and prove it is correct
Prim's Algorithm	Prim's Algorithm
What if we want to grow a tree as a single connected component starting from some vertex s? 5 1 5 1 6 7,5,2,3,1	Initialize $T = \{\}$ Initialize $S = \{s\}$ while $ S < n$ do Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$ $T = T \cup \{e\}$ $S = S \cup \{v\}$ Correctness? Use cut property
 Prim's algorithm: let S be the component containing S. Add chapest edge from S to VIS. 	

- 5.000 ... 03
- Hack: break ties by perturbing each edge weight by a tiny unique amount.
- Implementation: break ties in an arbitrary but consistent way (e.g., lexicographic)
- (There is a more "elegant" way that requires a stronger cut property.)

 $\bar{S} = S \cup \{\mathbf{x}\}$ mark v "attached"

What does this remind you of?

