
Goals

I Introduce the shortest path problem in directed graphs with nonnegative edge
lengths

Shortest Paths Problem

Problem: find shortest paths in a directed graph with edge lengths (e.g., Google maps)

Let’s Formalize the Problem

I Directed graph G = (V,E) with nonnegative
edge lengths ¸(e) Ø 0

I Define length of path P consisting of edges
e1, e2, . . . , ek as

¸(P) = ¸(e1) + ¸(e2) + . . .+ ¸(ek)

I Starting node s
I Let d(v) be the length of shortest s v path.
I Problem: Can we e�ciently find d(v) for all

nodes v œ V ?
I Question: Why for all nodes at the same time?

Goals

I Derive Dijkstra’s algorithm for shortest paths

Dijkstra Derivation

Suppose all edges have integer length. Can we use BFS to solve this problem?

Recall: nodes in layer Li are at distance i from start.

Dijkstra Derivation

Dijkstra Derivation Dijkstra Derivation

Dijkstra’s Algorithm

Idea: keep track of expanding “wavefront” (arrival time at v = d(v))
I find next node v to be hit by wave (= unexplored node closest to s)
I explore v: update tentative arrival time at each neighbor

Dijkstra’s Algorithm Example

s

a

g

d

e

b

c

f

5

10

4

12

16

3

3

7

9

4

20

5

1

13

7

5

Goals

I Describe implementation of Dijkstra’s algorithm and analyze its running time

Dijkstra’s Algorithm Implementation

Notation:
I dÕ(v) — earliest tentative arrival time so far for node v
I d(v) — shortest distance (actual arrival time)

How to keep track of the wavefront?
I Find next arrival: node v with smallest dÕ(v)
I Set shortest distance: d(v) = dÕ(v)
I Update dÕ(v) for neighbors of v if path through v shorter

What data structure supports find smallest and update values?

Shortest Paths Problem Dijkstra’s Algorithm

set A = V Û Priority queue
set dÕ(v) = Œ for all nodes Û Tentative arrival time
set dÕ(s) = 0
while A not empty do Û Nodes left to explore

extract node v œ A with smallest dÕ(v) value
set d(v) = dÕ(v) Û Wave arrives at v
for all edges (v, w) where w œ A do

if d(v) + ¸(v, w) < dÕ(w) then Û Shorter path to w??
dÕ(w) = d(v) + ¸(v, w)

Running Time?

Use heap-based priority queue for A
set A = V
set dÕ(v) = Œ for all nodes
set dÕ(s) = 0
while A not empty do

extract node v œ A with smallest dÕ(v) value Û Extract-min
set d(v) = dÕ(v)
for all edges (v, w) where w œ A do

if d(v) + ¸(v, w) < dÕ(w) then
dÕ(w) = d(v) + ¸(v, w) Û Update-key

I n extract-min operations. O(n logn)
I m update-key operations. O(m logn)
I Total: O((m+ n) logn)

Tracking the Shortest Path

Keep track of node that last updated arrival time dÕ(v)
Call it prev(v) = predecessor in shortest path

set A = V
set prev(v) = null for all nodes
set dÕ(v) = Œ for all nodes
set dÕ(s) = 0
while A not empty do

extract node v œ A with smallest dÕ(v) value
set d(v) = dÕ(v)
for all edges (v, w) where w œ A do

if d(v) + ¸(v, w) < dÕ(w) then
dÕ(w) = d(v) + ¸(v, w)
prev(w) = v

Goals

I Prove that Dijkstra’s algorithm is correct

Proof of Correctness

I Idea: nodes are explored in increasing order of distance from s.
I At each step, we have:

A: set of nodes still to explore
S = V \A: explored nodes, d(v) assigned

I Claim (invariant):
(1) for v œ S, d(v) is length of shortest s v path
(2) for y œ A, dÕ(y) is the length of the shortest s y path with all nodes in S except y.

I Proof: By induction on |S|

Induction Proof

Base case: Initially S = ÿ. Both (1) and (2) are true.

Induction step:
I Assume the invariant is true for |S| = k Ø 0.
I Let v = next node added to S, so we set d(v) = dÕ(v)
I We claim (1) is true: the shortest s v path has length d(v) = dÕ(v).

I By (2), dÕ(v) is length of the shortest path s v path with all prior nodes in S. We
claim this is the shortest s v path overall.

I Why? Every path to v must leave S eventually; if it first hops to some other node y
outside of S, it is already at least as long as dÕ(v), because dÕ(v) Æ dÕ(y).

I Paths can’t get shorter after leaving S because edge lengths are non-negative.

Induction Proof: Invariant (2)

Invariant (2) is directly maintained by the algorithm: after adding v to S, it updates
dÕ(w) for all neighbors w if a shorter path is found through v.

for all edges (v, w) where w œ A do
if d(v) + ¸(v, w) < dÕ(w) then

dÕ(w) = d(v) + ¸(v, w)

