Goals

» Introduce the shortest path problem in directed graphs with nonnegative edge
lengths

Shortest Paths Problem

Problem: find shortest paths in a directed graph with edge lengths (e.g., Google maps)

6
1000

Let's Formalize the Problem

» Directed graph G = (V, E) with nonnegative

d(“’\f/% edge lengths £(e) > 0 ,é(m,v) e=(u,v)
N 6 » Define length of path P consisting of edges
1000 10 €1,€2,...,€L as
S t UP) = £er) + les) + ... + Ller)
5 \=19
Ca(f(» Starting node s
3 7 9 > Let d(v) be the length of shortest s ~ v path.

» Problem: Can we efficiently find d(v) for all
nodes v € V7?7
» Question: Why for all nodes at the same time?

Goals

» Derive D[_iE}stra’s algorithm for shortest paths

Dijkstra Derivation

Suppose all edges have integer length. Can we use BFS to solve this problem?

< 6 Iq

3 O
Recall: nodes in layer L; are at distance ¢ from start.

Dijkstra Derivation

Dijkstra Derivation

Dijkstra's Algorithm “eco,
\/@ C 1000 2% 5
s 3 g)\
2 ! G
Idea: keep track of expanding “wavefront” (arrival time at v = d(v))

» find next node v to be hit by wave (= unexplored node closest to s)
» explore v: update tentative arrival time at each neighbor

Dijkstra’s Algorithm Example

e,

\/E_ 16 q\/ 3
d(;\?/o 5 3 J9 7 1 9
O oy
S 10 g 5 7
P4
4\@//4 13\%
d 20 f
4 X0 16 /

Goals

» Describe implementation of Dijkstra's algorithm and analyze its running time

Dijkstra’s Algorithm Implementation

g
Notation: [ose”
. . . . A1
» d'(v) — earliest tentative arrival time so far for node v
. o o,
» d(v) — shortest distance (actual arrival time) 1%
Jo 5
How to keep track of the wavefront?
» Find next arrival: node v with smallest d'(v) 3
» Set shortest distance: d(v) = d'(v) /7

» Update d'(v) for neighbors of v if path through v shorter

What data structure supports find smallest and update values?

Pr\'or‘ﬂ'ﬂ c(we we

V3

Shortest Paths Problem

©.¢)
A
-

s

1000

8
A A
Iy s

Sy

3 3

n

Dijkstra’s Algorithm

umt%@lO(cd V\w(:l(,s
set A=V > Priority queue
set d'(v) = oo for all nodes > Tentative arrival time
set d'(s) =0

while A not empty do > Nodes left to explore
extract node v € A with smallest d’(v) value
set d(v) = d'(v)
for all edges (v, w) where w € A do
if d(v) + {(v,w) < d'(w) then
d'(w) = d(v) + (v, w)

> Wave arrives at v

> Shorter path to w??

Running Time?

Use heap-based priority queue for A

set A=V
set d’'(v) = oo for all nodes
set d'(s) =0

while A not empty do

extract node v € A with smallest d'(v) value W\

set d(v) = d'(v)

> Extract-min

for all edges (v, w) where w € A do ™M
if d(v) + ¢(v,w) < d'(w) then

d'(w) = d(v) + (v, w)

> n extract-min operations. O(n

<L > Update-key

logn)

» m update-key operations. O(mlogn)

» Total: O((m + n)logn)

Tracking the Shortest Path

Vb, %
k00, %1

)
@o—4
0% %O
Jo
2 g
while A not empty do 3

extract node v € A with smallest d’(v) value @

set d(v) = d'(v) Js,3
for all edges (v, w) where w € A do
if d(v) + {(v,w) < d'(w) then
d'(w) = d(v) + (v, w)

prev(w) = v

Keep track of node that last updated arrival time d’'(v
Call it prev(v) = predecessor in shortest path

set A=V

set prev(v) = null for all nodes
set d’'(v) = oo for all nodes

set d'(s) =0

Goals

» Prove that Dijkstra’s algorithm is correct

Proof of Correctness

» Idea: nodes are explored in increasing order of distance from s.
> At each step, we have:
A: set of nodes still to explore
S =V \ A: explored nodes, d(v) assigned
» Claim (invariant);
(1) for v € S, d(v) is length of shortest s ~» v path (COf'CC('V\t€3>
(2) fory € A, d'(y) is the length of the shortest s ~~ y path with all nodes in .S except y.
» Proof: By induction on |S|

Induction Proof 954
o ©)

Base case: Initially S = @. Both (1) and (2) are true. v/ S
Induction step: \8
» Assume the invariant is true for |S| =k > 0.
» Let v = next node added to S, so we set d(v) = d'(v)
> We claim (1) is true: the shortest s ~» v path has length d(v) = d'(v).

> By (2), d'(v) is length of the shortest path s ~» v path with all prior nodes in S. We
claim this is the shortest s ~» v path overall.

> Why? Every path to v must leave S eventually; if it first hops to some other node y
outside of S, it is already at least as long as d’'(v), because d'(v) < d'(y).

> Paths can't get shorter after leaving S because edge lengths are non-negative.

DVve S = dl)=length of Shortest s~V path

A —= (¢)= (enetln O'P Shortest S— Pq{-l,\
) pe A = dlg= leghe en sherfest S \{EYS

=)

Induction Proof: Invariant (2)

Invariant (2) is directly maintained by the algorithm: after adding v to S, it updates
d'(w) for all neighbors w if a shorter path is found through v.

for all edges (v, w) where w € A do
if d(v) + {(v,w) < d'(w) then
d'(w) =d(v) + (v, w)

