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Review and Outlook

▶ Graph traversal by BFS/DFS
▶ Different versions of general exploration strategy
▶ O(m + n) time
▶ Produce trees with useful properties (for other problems)
▶ Basic algorithmic primitive — used in many other algorithms

(path from s to t, connected components)

▶ Bipartite testing

▶ Directed graphs
▶ Traversal
▶ Topological sorting
▶ (Strong connectivity)



Bipartite Graphs

Definition Graph G = (V, E) is bipartite if V can be partitioned into sets X, Y such
that every edge has one end in X and one in Y .

Can color nodes red/blue s.t. no edges between nodes of same color.

Examples

▶ Bipartite: student-college graph in stable matching
▶ Bipartite: client-server connections
▶ Not bipartite: “odd cycle” (cycle with odd # of nodes)

Claim (easy): If G contains an odd cycle, it is not bipartite.



Bipartite Testing

Question Given G = (V, E), is G bipartite?

Algorithm? Idea: run BFS from any node s

▶ L0 = red
▶ L1 = blue
▶ L2 = red
▶ . . .
▶ Even layers red, odd layers blue

What could go wrong? Edge between two nodes at same layer.



Algorithm

Run BFS from any node s
if there is an edge between two nodes in same layer then

Output "not bipartite"
else

Output "bipartite" with X = even layers and Y = odd layers



Correctness

Remember the fact about BFS: every edge connects nodes in the same layer or in
adjacent layers (i.e., one even, one odd).

Proof structure:

1. If the algorithms outputs “bipartite”, then all edges connect nodes in an even layer
(X) and an odd layer (Y ), so G is bipartite. ✓

2. If the algorithm outputs “not bipartite”, then there is an edge between two nodes in
the same layer. We will show this implies that G has an odd cycle, so G is not
bipartite.



Proof

Claim: if there is an edge between two nodes in the same layer, then G has an odd cycle.

▶ Let T be BFS tree of G and suppose (x, y) is an edge between two nodes in the
layer j

▶ Let z ∈ Li be the least common ancestor of x and y
(Useful in proofs: take least/greatest item with some property)
▶ Let Pzx = path from z to x in T
▶ Let Pyz = path from z to y in T
▶ The path that follows Pzx then edge (x, y) then Pyz is a cycle of length 2(j − i) + 1,

which is odd

▶ The claim is proved, which completes the proof of the algorithm



Clicker

Which of the following is true?

A. If G is bipartite, then G does not have an odd cycle
B. If G does not have an odd cycle, then G is bipartite
C. Both A and B
D. Neither A nor B



Directed Graphs

G = (V, E)

▶ (u, v) ∈ E is a directed edge
▶ u points to v
▶ e = (u, v) leaves u, enters v, is an outgoing edge from u, incoming edge to v

Examples

▶ Facebook / LinkedIn: undirected
▶ Twitter/X/ Bluesky / Instagram: directed
▶ Web: directed
▶ Road network: directed (discuss)



Directed Graph Definitions

Most definitions extend naturally to directed graphs by mapping the word “edge” to
“directed edge”

▶ Directed path: sequence P = v1, v2, . . . , vk−1, vk such that each consecutive pair
vi, vi+1 is joined by a directed edge in G. A v1 → vk path.

▶ Directed cycle: directed path with v1 = vk

▶ When referring to a directed graph, the words “path” and “cycle” mean “directed
path” and “directed cycle”

▶ Connected? Connected component? More subtle, because now there can be a
path from s to t but not vice versa. More later.



Directed Graph Traversal

Reachability. Find all nodes reachable from some node s. All nodes v with s→ v path.

s→ t shortest path. What is the length of the shortest directed path from s to t?

Algorithm?



Directed Graph Traversal

BFS/DFS naturally extend to directed graphs.
BFS(s):

mark s as "discovered"
L[0]← {s}, i← 0
while L[i] is not empty do

L[i + 1]← empty list
for all nodes v in L[i] do

for all edges (v, w) leaving v do
if w is not marked "discovered" then

mark w as "discovered"
put w in L[i + 1]

i← i + 1



Directed Graph Traversal

Find all nodes v with v → t path? BFS following edges in reverse direction.

Useful to keep adjacency lists for both outgoing and incoming edges.



Clicker

Suppose G is a directed path on n vertices and BFS is called repeatedly starting from
any unexplored vertex until all nodes are explored. What is the maximum number of
times BFS may be called?

A. n− 1
B. n
C. 1
D. m



Directed Acyclic Graphs

Definition: A directed acyclic graph (DAG) is a directed graph with no cycles.

Models dependencies, e.g. course prerequisites:

Math132

CS187

CS220

CS240

CS250

CS311

CS383



Topological Sorting

Definition: A topological ordering of a directed graph is an ordering of the nodes such
that all edges go “forward” in the ordering

▶ A way to order the classes so all prerequisites are satisfied
▶ Label nodes v1, v2, . . . , vn such that
▶ For all edges (vi, vj) we have i < j

Q: Is a topological ordering possible for any directed graph?



Topological Sorting

Math132

CS187

CS220

CS240

CS250

CS311

CS383

Exercise

1. Find a topological ordering.
2. Devise an algorithm to find a topological ordering.



Topological Ordering

M132 C187 C220 C240 C250 C311 C383

Claim If G has a topological ordering, then G is a DAG.



Topological Sorting

Problem Given DAG G, compute a topological ordering for G.

topo-sort(G)
while there are nodes remaining do

Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G

Running time? Can show it’s O(m + n)



Topological Sorting Analysis

What to prove:

1. Algorithm can always find an ordering
2. The ordering is a topological ordering.

Sketch of analysis:

▶ In a DAG G, there is always a node v with no incoming edges. Try to prove.
▶ Any such node v can be first in the topological ordering.
▶ Removing v from G produces a new DAG G′.
▶ The node v followed by a topological ordering for G′ is a topological ordering for G.



DAGs and Topological Orderings

Theorem: G is a DAG if and only if G has a topological ordering.

Proof:

1. If G is a DAG, the algorithm finds a topological ordering.
2. If G is not a DAG then G does not have a topological ordering.



Clicker

The maximum number of edges in a DAG with n nodes is

A. 2(n− 1)
B. 2n− 1
C. n(n− 1)/2
D. n(n− 1)



Directed Graph Connectivity
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Figure 13.6: A directed graph with its strongly connected components identified.

Strongly connected graph: graph with directed
path between any pair of nodes.

Strongly connected component (SCC):
maximal subset of nodes with directed path
between any pair.

SCCs can be found in time O(m + n).
(Tarjan, 1972)



Clicker

Consider the graph G′ whose nodes are SCCs and there is an edge from C to D if any
node in C has an edge to D. Which of the following is always true?

A. G′ is strongly connected
B. G′ has a cycle
C. G′ has at least n/2 nodes
D. G′ is a DAG


