Review and Outlook

- Graph traversal by BFS/DFS
 - Different versions of general exploration strategy
 - $O(m + n)$ time
 - Produce trees with useful properties (for other problems)
 - Basic algorithmic primitive — used in many other algorithms (path from s to t, connected components)
- Bipartite testing
- Directed graphs
 - Traversal
 - Topological sorting
 - Strong connectivity

Bipartite Graphs

Definition: A graph $G = (V, E)$ is bipartite if V can be partitioned into sets X, Y such that every edge has one end in X and one in Y.

Can color nodes red/blue so that no edges connect nodes of the same color.

Examples
- Bipartite: student-college graph in stable matching
- Bipartite: client-server connections
- Not bipartite: "odd cycle" (cycle with an odd number of nodes)
- Not bipartite: any graph containing an odd cycle

Claim (easy): If G contains an odd cycle, it is not bipartite.

Bipartite Testing

Question: Given $G = (V, E)$, is G bipartite?

Algorithm: Idea: run BFS from any node s

- $L_0 = \text{red}$
- $L_1 = \text{blue}$
- $L_2 = \text{red}$
- ... (even layers red, odd layers blue)

What could go wrong? Edge between two nodes at the same layer.

Algorithm

- Run BFS from any node s
 - if there is an edge between two nodes in the same layer then Output "not bipartite"
 - else
 - $X =$ even layers
 - $Y =$ odd layers
 - end if

Correctness? Recall: all edges between same or adjacent layers.

1. No edges between nodes in the same layer \Rightarrow correct labeling, G bipartite.
2. Edge between two nodes in the same layer $\Rightarrow G$ has an odd cycle, not bipartite.

Proof

- Let T be BFS tree of G and suppose (x, y) is an edge between two nodes in the layer j
 - Let $z \in L_i$ be the least common ancestor of x and y (Useful in proofs: take least/greatest item with some property)
 - Let P_{zx} = path from z to x in T
 - Let P_{zy} = path from z to y in T
 - The path that follows P_{zx} then edge (x, y) then P_{zy} is a cycle of length $2(j - i) + 1$, which is odd
 - Therefore G is not bipartite.
Which of the following is true?

A. If G is bipartite, then G does not have an odd cycle
B. If G does not have an odd cycle, then G is bipartite
C. Both A and B
D. Neither A nor B

Directed Graph Definitions

Most definitions extend naturally to directed graphs by mapping the word “edge” to “directed edge”

- **Directed path**: sequence $P = v_1, v_2, \ldots, v_k$ such that each consecutive pair v_i, v_{i+1} is joined by a directed edge in G. A $v_1 \rightarrow v_k$ path.

- **Directed cycle**: directed path with $v_1 = v_k$

- When referring to a directed graph, the words “path” and “cycle” mean “directed path” and “directed cycle”

- **Connected? Connected component?** More subtle, because now there can be a path from s to t but not vice versa. More later.

Directed Graph Traversal

BFS/DFS naturally extend to directed graphs.

BFS(s):

- mark s as "discovered"
- $L[0] \leftarrow \{s\}$, $i \leftarrow 0$
- while $L[i]$ is not empty do
 - $L[i+1] \leftarrow$ empty list
 - for all nodes v in $L[i]$ do
 - for all edges (v, w) leaving v do
 - if w is not marked "discovered" then
 - mark w as "discovered"
 - put w in $L[i+1]$
 - end if
 - end for
 - end for
 - $i \leftarrow i + 1$
- end while

Find all nodes v with $v \rightarrow t$ path? BFS following edges in reverse direction.

Useful to keep adjacency lists for both outgoing and incoming edges.
Clicker

Suppose G is a directed path on n vertices and BFS is called repeatedly starting from any unexplored vertex until all nodes are explored. What is the maximum number of times BFS may be called?

A. $n - 1$
B. n
C. 1
D. m

Directed Acyclic Graphs

Definition: A directed acyclic graph (DAG) is a directed graph with no cycles.

Models dependencies, e.g. course prerequisites:

Math132
CS187
CS220
CS240
CS250
CS311
CS383

Topological Sorting

Definition: A topological ordering of a directed graph is an ordering of the nodes such that all edges go “forward” in the ordering

- Label nodes v_1, v_2, \ldots, v_n such that
- For all edges (v_i, v_j) we have $i < j$
- A way to order the classes so all prerequisites are satisfied

Q: Is a topological ordering possible for any directed graph?

Exercise

1. Find a topological ordering.
2. Devise an algorithm to find a topological ordering.

Topological Ordering

Claim If G has a topological ordering, then G is a DAG.

Problem Given DAG G, compute a topological ordering for G.

topo-sort(G)

while there are nodes remaining do
 Find a node v with no incoming edges
 Place v next in the order
 Delete v and all of its outgoing edges from G
end while

Running time? $O(n^2 + m)$ easy. $O(m + n)$ more clever
Topological Sorting Analysis

- In a DAG, there is always a node \(v \) with no incoming edges. Try to prove. (contradiction, pigeonhole principle)
- Removing a node \(v \) from a DAG, produces a new DAG.
- Any node with no incoming edges can be first in topological ordering.

Theorem: \(G \) is a DAG if and only if \(G \) has a topological ordering.

Clicker

The maximum number of edges in a DAG with \(n \) nodes is

A. \(2(n - 1) \)
B. \(2n - 1 \)
C. \(n(n - 1)/2 \)
D. \(n(n - 1) \)

Topological Sorting in \(O(m + n) \)

topo-sort(\(G \))

\[\text{while there are nodes remaining do} \]

- Find a node \(v \) with no incoming edges
- Place \(v \) next in the order
- Delete \(v \) and all of its outgoing edges from \(G \)

\[\text{end while} \]

Optimization: don’t search every time for nodes w/o incoming edges

- Keep and update incoming edge count for each node (setup in \(O(m + n) \), each update constant-time)
- Keep set of nodes of nodes with incoming edges; add node when its count becomes zero
- Running time: \(O(m + n) \)

Directed Graph Connectivity

- Strongly connected graph. Directed path between any two nodes.
- Strongly connected component (SCC). Maximal subset of nodes with directed path between any two.
- SCCs can be found in time \(O(m + n) \). (Tarjan, 1972)

Clicker

Consider the graph \(G' \) whose nodes are SCCs and there is an edge from \(C \) to \(D \) if any node in \(C \) has an edge to \(D \). Which of the following is always true?

A. \(G' \) is strongly connected
B. \(G' \) has a cycle
C. \(G' \) has at least \(n/2 \) nodes
D. \(G' \) is a DAG

BFS in Directed Graphs: Non-Tree Edges

With respect to BFS tree, graph edges can go

- one level down (tree or non-tree edge)
- why not > 1? same reason, would add to next level
- same level (non-tree)
- any levels up (non-tree)
DFS in Directed Graphs: Non-Tree Edges

3 → 1 is a back edge (to ancestor)
2 → 5 is a forward edge (to descendant)
4 → 5 is a cross edge (node in another subtree)