Thought experiment. World social graph.

- Is it connected?
- If not, how big is largest connected component?
- Is there a path between you and King Charles III?

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search

Explore outward from starting nodes by distance. “Expanding wave”

Define layer $L_i = \text{all nodes at distance exactly } i \text{ from } s$.

Layers

- $L_0 = \{s\}$
- $L_1 = \text{nodes with edge to } L_0$
- $L_2 = \text{nodes with an edge to } L_1 \text{ that don’t belong to } L_0 \text{ or } L_1$
- \ldots
- $L_{i+1} = \text{nodes with an edge to } L_i \text{ that don’t belong to any earlier layer.}$

Observation: There is a path from s to t if and only if t appears in some layer.
Clicker

How many nodes are in layer 2, starting a BFS from MIT?

A. 4
B. 5
C. 6
D. None of the above

BFS Implementation

BFS(s):
mark s as "discovered" ▷ 1
L[0] ← {s}, i ← 0 ▷ 1
while L[i] is not empty do ▷ ≤ n
L[i + 1] ← empty list
for all nodes v in L[i] do ▷ ≤ n
if v is not marked "discovered" then ▷ 2
mark v as "discovered" ▷ 2
put v in L[i + 1] ▷ 2
i ← i + 1 ▷ ≤ n

Running time? How many times does each line execute? (For now, assume graph is connected)

BFS Running Time

BFS(s):
mark s as "discovered" ▷ 1
L[0] ← {s}, i ← 0 ▷ 1
while L[i] is not empty do ▷ ≤ n
L[i + 1] ← empty list
for all nodes v in L[i] do ▷ ≤ n
for all neighbors w of v do ▷ 2m
if w is not marked "discovered" then ▷ 2
mark w as "discovered" ▷ 2
put w in L[i + 1] ▷ 2
i ← i + 1 ▷ ≤ n

Running time: Θ(m + n)
BFS Running Time

BFS running time: $\Theta(m + n)$
- Another way to think about it: “touch each node and edge” a constant number of times
- Hidden assumption: can iterate over neighbors of v efficiently...

Graph Representation: Adjacency Lists

Each node keeps list of neighbors

- Each edge stored twice
- Space: $\Theta(m + n)$
- Time to check if (u, v) is an edge? $O(\text{degree}(u))$ (degree = number of neighbors)
- Time to iterate over all neighbors of v? $O(\text{degree}(u))$

Clicker

Let $q = \sum_{v \in V} \text{degree}(v)$ (this is the sum of degrees of all nodes in the graph)

Which one of the following is false?

A. q is twice the number of edges
B. q is n times the average degree
C. q is $\Theta(m + n)$ if $m \geq n$
D. None of the above

BFS Tree

We can use BFS to make a tree. (blue: “tree edges”, dashed: “non-tree edges”)
BFS Tree

BFS(s):
mark s as "discovered"
$L[0] \leftarrow \{s\}$, $i \leftarrow 0$
$T \leftarrow \text{empty}$
while $L[i]$ is not empty do
 $L[i + 1] \leftarrow \text{empty list}$
 for all nodes v in $L[i]$ do
 for all neighbors w of v do
 if w is not marked "discovered" then
 mark w as "discovered"
 put w in $L[i + 1]$
 put (v, w) in T
 $i \leftarrow i + 1$

BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph $G = (V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof

$\begin{itemize}
 \item Let (x, y) be an edge
 \item Assume x is discovered first and placed in L_i
 \item Then $y \in L_j$ for $j \geq i$
 \item When neighbors of x are explored, y is either already in L_i or L_{i+1}, or is discovered and added to L_{i+1}
\end{itemize}$

Clicker

Suppose in BFS that the nodes in each layer are explored in a different order (e.g. reverse). Which of the following are true?

A. The nodes that appear in each layer may change
B. The BFS tree may change
C. Both A and B
D. Neither A nor B
Depth-First Search

Depth-first search (DFS): keep exploring from the most recently added node until you have to backtrack.

Dotted edges: to already explored nodes

DFS: Recursive Implementation

DFS(u)
mark u as "explored"
for all edges (u, v) do
if v is not "explored" then
call DFS(v) recursively

Running time: $O(m + n)$ same as BFS

DFS: Running Time

How to analyze if algorithm is recursive? Same: count executions of each line, including recursive call

DFS(u)
mark u as "explored"
for all edges (u, v) do
if v is not "explored" then
call DFS(v) recursively

Running time: $O(m + n)$ same as BFS

DFS Tree

Claim: Non-tree edges lead to (indirect) ancestors
Claim: Let T be the tree discovered by DFS, and let (x, y) be an edge of G that is not in T. Then one of x or y is an ancestor of the other.

Proof:
- Let x be the first of the two nodes explored.
- Is y explored at beginning of DFS(x)? No.
- At some point during DFS(x), we examine the edge (x, y). Is y explored then?
 - Yes, otherwise we would put (x, y) in T.
- $\Rightarrow y$ was explored during DFS(x).
- $\Rightarrow y$ is a descendant of x.

Generic Traversal Implementations

Generic approach: maintain set of explored nodes and discovered nodes.
- Explored = have seen this node and explored its outgoing edges.
- Discovered = the “frontier”. Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes

$\text{Traverse}(s)$
- put s in A
- while A is not empty do
 - take a node v from A
 - if v is not marked "explored" then
 - mark v "explored"
 - for each edge (v, w) incident to v do
 - put w in A $\triangleright w$ is discovered

BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)

Clicker

Clicker

- put s in A
- while A is not empty do
 - take a node v from A
 - if v is not marked "explored" then
 - mark v "explored"
 - for each edge (v, w) incident to v do
 - put w in A $\triangleright w$ is discovered

Suppose we run this traversal code and every node is marked explored before it terminates. Which of the following is false?

A. Every node is marked “explored” exactly once.
B. A single node could be put into A more than once.
C. If $w \neq s$, the number of times that node w is put into A is degree(w).
D. It’s possible that there exist nodes x and y with no path from x to y.
Exploring *all* Connected Components

How to explore entire graph even if it is disconnected?

\[
\textbf{while} \text{ there is some unexplored node } s \textbf{ do} \\
\text{Traverse}(s) \quad \triangleright \text{ Run BFS/DFS starting from } s. \\
\text{Extract connected component containing } s \\
\]

Running time? Still $O(m + n)$

\begin{itemize}
 \item Traversal of each component takes time proportional to the numbers of nodes + edges in that component
\end{itemize}

Advice: usually OK to assume graph is connected. State if you are doing so and why it does not trivialize the problem.

Summary

\begin{itemize}
 \item Graph traversal by BFS/DFS: basic algorithmic primitive used in many other algorithms
 \begin{itemize}
 \item Is there a path from u to v?
 \item Find all connected components
 \item Produce trees with different properties, sometimes useful in algorithms
 \end{itemize}
 \item $\Theta(m + n)$ time
 \item Different versions of general exploration strategy
\end{itemize}