BFS So Far

Explore outward from s by distance \rightarrow layers

Layer $L_i =$ nodes at distance i

- $L_0 = \{s\}$
- $L_1 =$ nodes with edge to L_0
- $L_2 =$ nodes with an edge to L_1 that don’t belong to L_0 or L_1
- \ldots
- $L_{i+1} =$ nodes with an edge to L_i that don’t belong to any earlier layer.

BFS Implementation

BFS(s):

1. mark s as "discovered"
2. $L[0] \leftarrow \{s\}, i \leftarrow 0$
3. while $L[i]$ is not empty do
 - $L[i + 1] \leftarrow$ empty list
 - for all nodes v in $L[i]$ do
 - for all neighbors w of v do
 - if w is not marked "discovered" then
 - mark w as "discovered"
 - put w in $L[i + 1]$
 - $i \leftarrow i + 1$

Running time? How many times does each line execute? (For now, assume graph is connected)

BFS Running Time

BFS(s):

1. mark s as "discovered" \(\triangleright 1\)
2. $L[0] \leftarrow \{s\}, i \leftarrow 0$ \(\triangleright 1\)
3. while $L[i]$ is not empty do \(\triangleright \leq n\)
 - $L[i + 1] \leftarrow$ empty list \(\triangleright \leq n\)
 - for all nodes v in $L[i]$ do \(\triangleright n\)
 - for all neighbors w of v do \(\triangleright 2m\)
 - if w is not marked "discovered" then \(\triangleright 2m\)
 - mark w as "discovered" \(\triangleright n\)
 - put w in $L[i + 1]$ \(\triangleright n\)
 - $i \leftarrow i + 1$ \(\triangleright \leq n\)

Running time: $\Theta(m + n)$

- Another way to think about it: "touch each node and edge" a constant number of times
- Hidden assumption: can iterate over neighbors of v efficiently...
Clicker

Let \(q = \sum_{v \in V} \text{degree}(v) \) (this is the sum of degrees of all nodes in the graph).
Which one of the following is false?

A. \(q \) is twice the number of edges
B. \(q \) is \(n \) times the average degree
C. \(q \) is \(\Theta(m + n) \) if \(m \geq n \)
D. None of the above

Graph Representation: Adjacency Lists

Each node keeps list of neighbors

- Each edge stored twice
- Space? \(\Theta(m + n) \)
- Time to check if \((u, v)\) is an edge? \(O(\text{degree}(u)) \)
 (degree = number of neighbors)
- Time to iterate over all neighbors of \(v \)? \(O(\text{degree}(u)) \)

BFS Tree

We can use BFS to make a tree. (blue: “tree edges”, dashed: “non-tree edges”)

\[
\text{BFS}(s): \\
\text{mark } s \text{ as "discovered"} \\
L[0] \leftarrow \{s\}, \quad i \leftarrow 0 \\
T \leftarrow \text{empty} \\
\text{while } L[i] \text{ is not empty do} \\
\quad L[i + 1] \leftarrow \text{empty list} \\
\quad \text{for all nodes } v \text{ in } L[i] \text{ do} \\
\quad \quad \text{if } w \text{ is not marked "discovered" then} \\
\quad \quad \quad \text{mark } w \text{ as "discovered"} \\
\quad \quad \quad \text{put } w \text{ in } L[i + 1] \\
\quad \quad \text{put } (v, w) \text{ in } T \\
\quad i \leftarrow i + 1
\]

BFS Tree

Claim: let \(T \) be the tree discovered by BFS on graph \(G = (V, E) \), and let \((x, y)\) be any edge of \(G \). Then the layer of \(x \) and \(y \) in \(T \) differ by at most 1.

Proof

- Let \((x, y)\) be an edge
- Assume \(x \) is discovered first and placed in \(L_i \)
- Then \(y \in L_j \) for \(j \geq i \)
- When neighbors of \(x \) are explored, \(y \) is either already in \(L_i \) or \(L_{i+1} \), or is discovered and added to \(L_{i+1} \)
Suppose in BFS that the nodes in each layer are explored in a different order (e.g. reverse). Which of the following are true?
A. The nodes that appear in each layer may change
B. The BFS tree may change
C. Both A and B
D. Neither A nor B

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently added node until you have to backtrack.

DFS: Recursive Implementation

DFS(u)
mark u as "explored"
for all edges (u, v) do
if v is not "explored" then
call DFS(v) recursively

DFS: Running Time

How to analyze if algorithm is recursive? Same: count executions of each line, including recursive call
DFS(u)
mark u as "explored"
for all edges (u, v) do
if v is not "explored" then
call DFS(v) recursively

Running time: O(m + n) same as BFS

DFS Tree

Claim: Non-tree edges lead to (indirect) ancestors

DFS: Non-tree edges lead to ancestors

Claim: Let T be the tree discovered by DFS, and let (x, y) be an edge of G that is not in T. Then one of x or y is an ancestor of the other.

Proof:
- Let x be the first of the two nodes explored
- Is y explored at beginning of DFS(x)? No.
- At some point during DFS(x), we examine the edge (x, y). Is y explored then? Yes, otherwise we would put (x, y) in T
- ⇒ y was explored during DFS(x)
- ⇒ y is a descendant of x
Generic Traversal Implementations

Generic approach: maintain set of explored nodes and discovered nodes

- Explored = have seen this node and explored its outgoing edges
- Discovered = the “frontier”. Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)

put s in A

while A is not empty do

take a node v from A

if v is not marked “explored” then

mark v "explored"

for each edge (v, w) incident to v do

put w in A \(\triangleright w \text{ is discovered} \)

BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

Clicker

put s in A

while A is not empty do

take a node v from A

if v is not marked “explored” then

mark v "explored"

for each edge (v, w) incident to v do

put w in A \(\triangleright w \text{ is discovered} \)

Suppose we run this traversal code and every node is marked explored before it terminates. Which of the following is false?

A. Every node is marked “explored” exactly once.
B. A single node could be put into A more than once.
C. If $w \neq s$, the number of times that node w is put into A is degree(w).
D. It’s possible that there exist nodes x and y with no path from x to y.

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do

Traverse(s)

\(\triangleright\) Run BFS/DFS starting from s.

Extract connected component containing s

Running time? Still $O(m + n)$

- Traversal of each component takes time proportional to the numbers of nodes + edges in that component

Advice: usually OK to assume graph is connected. State if you are doing so and why it does not trivialize the problem.

Summary

- Graph traversal by BFS/DFS: basic algorithmic primitive used in many other algorithms
 - Is there a path from v to v'?
 - Find all connected components
 - Produce trees with different properties, sometimes useful in algorithms
- $\Theta(m + n)$ time
- Different versions of general exploration strategy