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Graphs: Motivation

▶ Shortest driving route from Amherst to Florida?
▶ Number of “degrees of separation” between you and Shohei Otani in online social

network?
▶ Find influencers and bots on X/twitter?
▶ Find reputable web pages?

How do we build algorithms to answer these questions?

Graphs and graph algorithms.



Networks
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One week of Enron emails
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Node = political blog; edge = link.
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Political blogosphere graph

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot
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Applications

▶ Networks (real, online, etc.)
▶ Shortest driving route from Amherst to Florida
▶ Number of “degrees of separation” between you and Tony Fauci
▶ Influencers / bots on twitter
▶ Reputable pages on web
▶ + many more

▶ Basic building block of many other algorithms / analyses
▶ Image segmentation
▶ Airplane scheduling
▶ Program analysis: control flow, function calls
▶ Playing chess (AI search)
▶ + many more



Graphs

A graph is a mathematical representation of a network

▶ Set of nodes (vertices) V
▶ Set of pairs of nodes (edges) E

Graph G = (V, E)

Notation: n = |V |, m = |E| (almost always)



Example: Internet in 1970
2.2. PATHS AND CONNECTIVITY 25

Figure 2.2: A network depicting the sites on the Internet, then known as the Arpanet, in
December 1970. (Image from F. Heart, A. McKenzie, J. McQuillian, and D. Walden [214];
on-line at http://som.csudh.edu/cis/lpress/history/arpamaps/.)

connections such as hyperlinks, citations, or cross-references. The list of areas in which

graphs play a role is of course much broader than what we can enumerate here; Figure 2.4

gives a few further examples, and also shows that many images we encounter on a regular

basis have graphs embedded in them.

2.2 Paths and Connectivity

We now turn to some of the fundamental concepts and definitions surrounding graphs. Per-

haps because graphs are so simple to define and work with, an enormous range of graph-

theoretic notions have been studied; the social scientist John Barnes once described graph

theory as a “terminological jungle, in which any newcomer may plant a tree” [45]. Fortu-

nately, for our purposes, we will be able to get underway with just a brief discussion of some

of the most central concepts.
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:

Edge e = {u, v} — but usually written e = (u, v)
u and v are neighbors, adjacent, endpoints of e
e is incident to u and v
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:
A path is a sequence P = v1, v2, . . . , vk−1, vk such that each consecutive pair vi, vi+1 is
joined by an edge in G

Path “from v1 to vk”. A v1–vk path
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:

Q: Which is not a path?

A. UCSB - SRI - UTAH
B. LINC - MIT - LINC - CASE
C. UCSB - SRI - STAN - UCLA - UCSB
D. None of the above
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions: Simple path, cycle, distance



Definitions

▶ Simple path: path where all vertices are distinct

▶ (Simple) Cycle: path v1, . . . , vk−1, vk where
▶ v1 = vk

▶ First k − 1 nodes distinct
▶ All edges distinct (k > 3)

▶ Distance from u to v: minimum number of edges in a u–v path
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:

Connected graph = graph with paths between every pair of vertices.

Connected component?



Definitions

▶ Connected component: maximal subset of nodes such that a path exists between
each pair in the set

▶ maximal = if a new node is added to the set, there will no longer be a path
between each pair



Clicker 26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Which statement about this graph is false?

A. Deleting any one edge of the graph must keep it connected

B. Deleting any two edges of the graph must disconnect it

C. Deleting any one node (with its edges) keeps it connected

D. There is a way to delete two nodes (with their edges) and disconnect it, but there is
another way to keep it connected.



Definitions

Tree: a connected graph with no cycles

▶ Q: Is this equivalent to trees you saw in Data Structures?
▶ A: More or less.

▶ Rooted tree: tree with parent-child relationship
▶ Pick root r and “orient” all edges away from root
▶ Parent of v = predecessor on path from r to v



Directed Graphs

Graphs can be directed, which means that edges point from one node to another, to
encode an asymmetric relationship. We’ll talk more about directed graphs later.

Graphs are undirected if not otherwise specified.



Graph Traversal

Thought experiment. World social graph.

▶ Is it connected?
▶ If not, how big is largest connected component?
▶ Is there a path between you and Shohei Otani?

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)



Breadth-First Search
Explore outward from starting node s by distance. “Expanding wave”

2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most e�cient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you



Breadth-First Search: Layers

Explore outward from starting node s.

Define layer Li = all nodes at distance exactly i from s.

Layers

▶ L0 = {s}
▶ L1 = nodes with edge to L0
▶ L2 = nodes with an edge to L1 that don’t belong to L0 or L1
▶ . . .
▶ Li+1 = nodes with an edge to Li that don’t belong to any earlier layer.

Observation: There is a path from s to t if and only if t appears in some layer.
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

A. 4

B. 5

C. 6

D. None of the above



BFS Layers
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BFS Implementation

BFS(s):
mark s as "discovered"
L[0]← {s}, i← 0 ▷ Discover s
while L[i] is not empty do

L[i + 1]← empty list
for all nodes v in L[i] do

for all neighbors w of v do ▷ Explore v
if w is not marked "discovered" then

mark w as "discovered" ▷ Discover w
put w in L[i + 1]

i← i + 1

Running time? How many total times does each line execute?



BFS Running Time

BFS(s):
mark s as "discovered" ▷ 1
L[0]← {s}, i← 0 ▷ 1
while L[i] is not empty do

L[i + 1]← empty list ▷ ≤ n
for all nodes v in L[i] do ▷ n

for all neighbors w of v do ▷ 2m
if w is not marked "discovered" then ▷ 2m

mark w as "discovered" ▷ n
put w in L[i + 1] ▷ n

i← i + 1 ▷ ≤ n

Running time: O(m + n). Hidden assumption: can iterate over neighbors of v
efficiently... OK pending data structure.



BFS Tree
We can use BFS to make a tree. (blue: “tree edges”, dashed: “non-tree edges”)
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BFS Tree

BFS(s):
mark s as "discovered"
L[0]← {s}, i← 0
T ← empty
while L[i] is not empty do

L[i + 1]← empty list
for all nodes v in L[i] do

for all neighbors w of v do
if w is not marked "discovered" then

mark w as "discovered"
put w in L[i + 1]
put (v, w) in T

i← i + 1



BFS Tree

MIT

LINC

CASE

CARN

HARV

BBNUTAH

SRI SDC RAND

UCLASTANUCSB

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any
edge of G. Then the layer of x and y in T differ by at most 1.



BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any
edge of G. Then the layer of x and y in T differ by at most 1.

Proof

▶ Let (x, y) be an edge
▶ Assume x is discovered first and placed in Li

▶ Then y ∈ Lj for j ≥ i
▶ When neighbors of x are explored, y is either already in Li or Li+1, or is discovered

and added to Li+1
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Suppose in BFS that the nodes in each layer are explored in a different order
(e.g. reverse). Which of the following are true?

A. The nodes that appear in each layer may change

B. The BFS tree may change

C. Both A and B

D. Neither A nor B


