Graphs: Motivation

- Shortest driving route from Amherst to Florida?
- Number of “degrees of separation” between you and Tom Brady?
- Mac Jones or Tony Fauci in online social network?
- Find influencers and bots on twitter?
- Find reputable web pages?

How do we build algorithms to answer these questions?

Graphs and graph algorithms.

Networks

Find reputable web pages?
Find influencers and bots on twitter?
Shortest driving route from Amherst to Florida?
Number of “degrees of separation” between you and Tom Brady?
Find reputable web pages?

Applications

- Networks (real, online, etc.)
 - Shortest driving route from Amherst to Florida
 - Number of “degrees of separation” between you and Tom Brady
 - Influencers / bots on twitter
 - Reputable pages on web
 - + many more

- Basic building block of many other algorithms / analyses
 - Image segmentation
 - Airplane scheduling
 - Program analysis: control flow, function calls
 - Playing chess (AI search)
 - + many more
A graph is a mathematical representation of a network

- Set of nodes (vertices) V
- Set of pairs of nodes (edges) E

Graph $G = (V, E)$

Notation: $n = |V|$, $m = |E|$ (almost always)

Definitions:

- Edge $e = \{u, v\}$ — but usually written $e = (u, v)$
- u and v are neighbors, adjacent, endpoints of e
- e is incident to u and v

Path “from v_1 to v_k”. A v_1-v_k path

Clicker

Definitions:

Q: Which is not a path?

A. UCSB - SRI - UTAH
B. LINC - MIT - LINC - CASE
C. UCSB - SRI - STAN - UCLA - UCSB
D. None of the above

Example: Internet in 1970

Definitions:

- A path is a sequence $P = v_1, v_2, \ldots, v_{k-1}, v_k$ such that each consecutive pair v_i, v_{i+1} is joined by an edge in G

Simple path, cycle, distance
Definitions

- Simple path: path where all vertices are distinct
- (Simple) Cycle: path \(v_1, \ldots, v_{k-1}, v_k \) where
 - \(v_1 = v_k \)
 - First \(k - 1 \) nodes distinct
 - All edges distinct \((k > 3) \)
- Distance from \(u \) to \(v \): minimum number of edges in a \(u \rightarrow v \) path

Example: Internet in 1970

Connected graph = graph with paths between every pair of vertices.
Connected component?

Definitions

- Connected component: maximal subset of nodes such that a path exists between each pair in the set
 - maximal = if a new node is added to the set, there will no longer be a path between each pair

Clicker

Which statement about this graph is false?
A. Deleting any one edge of the graph must keep it connected
B. Deleting any two edges of the graph must disconnect it
C. Deleting any one node (with its edges) keeps it connected
D. There is a way to delete two nodes (with their edges) and disconnect it, but there is another way to keep it connected.

Definitions

- Tree: a connected graph with no cycles

Directed Graphs

Graphs can be directed, which means that edges point from one node to another, to encode an asymmetric relationship. We'll talk more about directed graphs later.

Graphs are undirected if not otherwise specified.
Graph Traversal

Thought experiment. World social graph.

▶ Is it connected?
▶ If not, how big is largest connected component?
▶ Is there a path between you and Mac Jones? What about Theresa May?
How can you tell algorithmically?
Answer: graph traversal! (BFS/DFS)

Breadth-First Search: Layers

Explore outward from starting node \(s \).
Define layer \(L_i \) = all nodes at distance exactly \(i \) from \(s \).

Layers

▶ \(L_0 = \{ s \} \)
▶ \(L_1 \) = nodes with edge to \(L_0 \)
▶ \(L_2 \) = nodes with an edge to \(L_1 \) that don’t belong to \(L_0 \) or \(L_1 \)
▶ \(\ldots \)
▶ \(L_{i+1} \) = nodes with an edge to \(L_i \) that don’t belong to any earlier layer.

Observation: There is a path from \(s \) to \(t \) if and only if \(t \) appears in some layer.

Clicker

How many nodes are in layer 2, starting a BFS from MIT?

A. 4
B. 5
C. 6
D. None of the above

BFS Implementation

\[
\text{BFS}(s): \\
\text{mark } s \text{ as "discovered"} \\
L[0] \leftarrow \{s\}, i \leftarrow 0 \\
\text{while } L[i] \text{ is not empty do} \\
L[i+1] \leftarrow \text{empty list} \\
\text{for all nodes } v \text{ in } L[i] \text{ do} \\
\text{if } w \text{ is not marked "discovered" then} \\
\text{mark } w \text{ as "discovered"} \\
\text{put } w \text{ in } L[i+1] \\
i \leftarrow i + 1
\]

Running time? How many times does each line execute?
BFS Running Time

BFS(s):
mark s as "discovered"
$L[0] ← \{s\}$, $i ← 0$
while $L[i]$ is not empty do
$L[i + 1] ← \text{empty list}$
for all nodes v in $L[i]$ do
 for all neighbors w of v do
 if w is not marked "discovered" then
 mark w as "discovered"
 put w in $L[i + 1]$
 $i ← i + 1$

Running time: $O(m + n)$. Hidden assumption: can iterate over neighbors of v efficiently... OK pending data structure.

BFS Tree

We can use BFS to make a tree. (blue: “tree edges”, dashed: “non-tree edges”)

Claim: let T be the tree discovered by BFS on graph $G = (V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof
- Let (x, y) be an edge
- Assume x is discovered first and placed in L_i
- Then $y ∈ L_j$ for $j ≥ i$
- When neighbors of x are explored, y is either already in L_i or L_{i+1}, or is discovered and added to L_{i+1}

BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph $G = (V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof
- Let (x, y) be an edge
- Assume x is discovered first and placed in L_i
- Then $y ∈ L_j$ for $j ≥ i$
- When neighbors of x are explored, y is either already in L_i or L_{i+1}, or is discovered and added to L_{i+1}

Clicker

Suppose in BFS that the nodes in each layer are explored in a different order (e.g. reverse). Which of the following are true?

A. The nodes that appear in each layer may change
B. The BFS tree may change
C. Both A and B
D. Neither A nor B