Thought experiment. World social graph.

- Is it connected?
- If not, how big is largest connected component?
- Is there a path between you and Tom Brady? What about Theresa May?

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search: Layers

Explore outward from starting node s.

Define layer $L_i = \{t \mid i = \text{distance from } s \text{ to } t\}$.

- $L_0 = \{s\}$
- $L_1 = \{t \mid s \text{ has edge to } t \}$
- $L_2 = \{t \mid t \text{ has edge to a node in } L_1 \}$
- \ldots
- $L_{i+1} = \{t \mid t \text{ has edge to a node in } L_i \}$

Observation: There is a path from s to t if and only if t appears in some layer.

Clicker

How many nodes are in layer 2, starting a BFS from MIT?

A) 4
B) 5
C) 6
D) None of the above
BFS Implementation

BFS(s):
 mark s as "discovered"
 \(L[0] \leftarrow \{s\}, \; i \leftarrow 0 \) \(\triangleright \) Discover s
 while \(L[i] \) is not empty do
 \(L[i + 1] \leftarrow \) empty list
 for all nodes \(v \) in \(L[i] \) do
 for all neighbors \(w \) of \(v \) do
 if \(w \) is not marked "discovered" then
 mark \(w \) as "discovered"
 put \(w \) in \(L[i + 1] \)
 \end if
 \end for
 \end for
 \(i \leftarrow i + 1 \)
 \end while

Running time? How many times does each line execute?

BFS Running Time

BFS(s):
 mark s as "discovered"
 \(L[0] \leftarrow \{s\}, \; i \leftarrow 0 \) \(\triangleright 1 \)
 while \(L[i] \) is not empty do
 \(L[i + 1] \leftarrow \) empty list
 for all nodes \(v \) in \(L[i] \) do
 for all neighbors \(w \) of \(v \) do
 if \(w \) is not marked "discovered" then
 mark \(w \) as "discovered"
 put \(w \) in \(L[i] \)
 \end if
 \end for
 \end for
 \(i \leftarrow i + 1 \)
 \end while

Running time: \(O(|V| + |E|) \). Hidden assumption: can iterate over neighbors of \(v \) efficiently... OK pending data structure.

BFS Tree

We can use BFS to make a tree. (blue: “tree edges”, dashed: “non-tree edges”)

Claim: let \(T \) be the tree discovered by BFS on graph \(G = (V, E) \), and let \((x, y)\) be any edge of \(G \). Then the layer of \(x \) and \(y \) in \(T \) differ by at most 1.

Proof
- Let \((x, y)\) be an edge
- Assume \(x \) is discovered first and placed in \(L_i \)
- Then \(y \in L_j \) for \(j \geq i \)
- When neighbors of \(x \) are explored, \(y \) is either already in \(L_i \) or \(L_{i+1} \), or is discovered and added to \(L_{i+1} \)

Claim: let \(T \) be the tree discovered by BFS on graph \(G = (V, E) \), and let \((x, y)\) be any edge of \(G \). Then the layer of \(x \) and \(y \) in \(T \) differ by at most 1.

Proof
- Let \((x, y)\) be an edge
- Assume \(x \) is discovered first and placed in \(L_i \)
- Then \(y \in L_j \) for \(j \geq i \)
- When neighbors of \(x \) are explored, \(y \) is either already in \(L_i \) or \(L_{i+1} \), or is discovered and added to \(L_{i+1} \)

Claim: let \(T \) be the tree discovered by BFS on graph \(G = (V, E) \), and let \((x, y)\) be any edge of \(G \). Then the layer of \(x \) and \(y \) in \(T \) differ by at most 1.

Proof
- Let \((x, y)\) be an edge
- Assume \(x \) is discovered first and placed in \(L_i \)
- Then \(y \in L_j \) for \(j \geq i \)
- When neighbors of \(x \) are explored, \(y \) is either already in \(L_i \) or \(L_{i+1} \), or is discovered and added to \(L_{i+1} \)

Claim: let \(T \) be the tree discovered by BFS on graph \(G = (V, E) \), and let \((x, y)\) be any edge of \(G \). Then the layer of \(x \) and \(y \) in \(T \) differ by at most 1.

Proof
- Let \((x, y)\) be an edge
- Assume \(x \) is discovered first and placed in \(L_i \)
- Then \(y \in L_j \) for \(j \geq i \)
- When neighbors of \(x \) are explored, \(y \) is either already in \(L_i \) or \(L_{i+1} \), or is discovered and added to \(L_{i+1} \)
Suppose in BFS that the nodes in each layer are explored in a different order (e.g. reverse). Which of the following are true?

A. The nodes that appear in each layer may change
B. The BFS tree may change
C. Both A and B
D. Neither A nor B

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently added node until you have to backtrack.

DFS: Recursive Implementation

DFS(u)
 mark u as "explored"
 for all edges (u, v) do
 if v is not "explored" then
 call DFS(v) recursively
 end if
 end for

DFS: Running Time

How to analyze if algorithm is recursive? Same: count executions of each line, including recursive call

DFS(u)
 mark u as "explored"
 for all edges (u, v) do
 if v is not "explored" then
 call DFS(v) recursively
 end if
 end for

Running time: \(O(m + n) \) same complexity as BFS
Same assumptions: can traverse neighbor list in time proportional to node degree

DFS Tree

\(T \leftarrow \text{empty} \)

DFS(v)
 mark u as "explored"
 for all edges (u, v) do
 if v is not "explored" then
 put (u, v) in T
 call DFS(v) recursively
 end if
 end for

Claim: Non-tree edges lead to (indirect) ancestors

DFS: Non-tree edges lead to ancestors

Claim: Let \(T \) be the tree discovered by DFS, and let \((x, y)\) be an edge of \(G \) that is not in \(T \). Then one of \(x \) or \(y \) is an ancestor of the other.

Proof:

- Let \(x \) be the first of the two nodes explored
- Is \(y \) explored at beginning of DFS(\(x \))? No.
- At some point during DFS(\(x \)), we examine the edge \((x, y)\). Is \(y \) explored then? Yes, otherwise we would put \((x, y)\) in \(T \)
- \(y \) was explored during DFS(\(x \))
- \(y \) is a descendant of \(x \)
Graph Representation: Adjacency Lists

- Each node keeps list of neighbors
- Space? \(\Theta(m + n) \)
- Checking if \((u, v)\) is an edge? \(O(\text{degree}(u)) \) time (degree = number of neighbors)

Generic Graph Traversal

Let \(A \) = data structure of discovered nodes

1. Traverse(s)
 1. put \(s \) in \(A \)
 2. while \(A \) is not empty do
 1. take a node \(v \) from \(A \)
 2. if \(v \) is not marked "explored" then
 1. mark \(v \) "explored"
 2. for each edge \((v, w)\) incident to \(v \) do
 1. put \(w \) in \(A \) \(\triangleright \) \(w \) is discovered
 end for
 end if
end while

BFS: \(A \) is a queue (FIFO) DFS: \(A \) is a stack (LIFO)

Can a node be discovered (placed in \(A \)) multiple times? Yes. For DFS, node is explored from parent that added it last (LIFO). For BFS, can avoid by not adding discovered nodes.

Clicker Question 2

- Put \(s \) in \(A \)
- while \(A \) is not empty do
 1. Take a node \(v \) from \(A \)
 2. if \(v \) is not "explored" then
 1. Mark \(v \) "explored"
 2. for each edge \((v, w)\) do
 1. Put \(w \) in \(A \) \(\triangleright \) \(w \) is discovered
 end for
end if
end while

What is the maximum number of times a node \(w \) can be put in \(A \)?
- A: once
- B: \(\text{degree}(w) \) times
- C: \(2 \cdot \text{degree}(w) \) times
- D: \(|V| \) times

Clicker Question 3

- DFS(s)
 1. Mark \(s \) as "explored"
 2. for each edge \((u, v)\) do
 1. if \(v \) is not "explored" then
 1. Call DFS(v) recursively
 end if
end for

Suppose we have a tree with \(n \) nodes, height \(h \) and degree \(d \).

Compare recursive and non-recursive DFS in terms of memory used for the stack
- A: recursive: \(\Theta(hd) \), non-recursive: \(\Theta(h) \)
- B: recursive: \(\Theta(h) \), non-recursive: \(\Theta(d) \)
- C: recursive: \(\Theta(n) \), non-recursive: \(\Theta(hd) \)
- D: recursive: \(\Theta(h) \), non-recursive: \(\Theta(hd) \)

Exploring all Connected Components

- How to explore entire graph even if it is disconnected?
 1. while there is some unexplored node \(s \) do
 1. Traverse(s) \(\triangleright \) Run BFS/DFS starting from \(s \).
 2. Extract connected component containing \(s \)
 end while

Running time? Does it change?
- Naive: \(O(m + n) \) per component \(\Rightarrow O(c(m + n)) \) if \(c \) components.
- Better: Search on component \(C \) only works on nodes/edges in \(C \)
 1. Time for component \(C \): \(O(|\text{edges in } C| + |\text{nodes in } C|) \)
 2. Total time still \(O(m + n) \)

Usually OK to assume graph is connected.
State if you are doing so and why it does not trivialize the problem.
Summary

- Graph traversal by BFS/DFS: basic algorithmic primitive used in many other algorithms
 - Is there a path from \(u \) to \(v \)?
 - Find all connected components
 - Produce trees with different properties, sometimes useful in algorithms
- \(\Theta(m + n) \) time
- Different versions of general exploration strategy