Thought experiment. World social graph.
- Is it connected?
- If not, how big is largest connected component?
- Is there a path between you and Tom Brady? What about Theresa May?

How can you tell algorithmically?
Answer: graph traversal! (BFS/DFS)

Breadth-First Search: Layers
Explore outward from starting node \(s \).

Define layer \(L_i = \{ v \mid \text{distance } i \text{ from } s \} \).

- \(L_0 = \{ s \} \)
- \(L_1 = \text{nodes with edge to } L_0 \)
- \(L_2 = \text{nodes with an edge to } L_1 \text{ that don’t belong to } L_0 \text{ or } L_1 \)
- \(\ldots \)
- \(L_{i+1} = \text{nodes with an edge to } L_i \text{ that don’t belong to any earlier layer} \)

Observation: There is a path from \(s \) to \(t \) if and only if \(t \) appears in some layer.

Graph Traversal

Clicker

How many nodes are in layer 2, starting a BFS from MIT?

A) 4
B) 5
C) 6
D) None of the above
BFS Implementation

BFS(s):
- mark s as "discovered"
- L[0] ← {s}, i ← 0
- while L[i] is not empty do
 - L[i + 1] ← empty list
 - for all nodes v in L[i] do
 - for all neighbors w of v do
 - if w is not marked "discovered" then
 - mark w as "discovered"
 - put w in L[i]
 - end if
 - end for
 - i ← i + 1
- end while

Running time? How many times does each line execute?

BFS Running Time

BFS(s):
- mark s as "discovered" ▶ 1
- L[0] ← {s}, i ← 0 ▶ 1
- while L[i] is not empty do ▶ 1
 - L[i + 1] ← empty list
 - for all nodes v in L[i] do ▶ n
 - for all neighbors w of v do ▶ 2m
 - if w is not marked "discovered" then
 - mark w as "discovered" ▶ n
 - put w in L[i]
 - end if
 - end for
 - i ← i + 1 ▶ n
- end while

Running time: $O(m + n)$. Hidden assumption: can iterate over neighbors of v efficiently... OK pending data structure.

BFS Tree

We can use BFS to make a tree. (blue: "tree edges", dashed: "non-tree edges")

BFS Tree

Claim: let T be the tree discovered by BFS on graph $G = (V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof
- Let (x, y) be an edge
- Assume x is discovered first and placed in L_i
- Then $y \in L_i$ for $j \geq i$
- When neighbors of x are explored, y is either already in L_i, or is discovered and added to L_{i+1}
Suppose in BFS that the nodes in each layer are explored in a different order (e.g. reverse). Which of the following are true?

A. The nodes that appear in each layer may change
B. The BFS tree may change
C. Both A and B
D. Neither A nor B

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently added node until you have to backtrack.

DFS: Recursive Implementation

DFS(u)
mark u as "explored"
for all edges (u, v) do
if v is not "explored" then
 call DFS(v) recursively
end if
end for

DFS Tree

Claim: Non-tree edges lead to (indirect) ancestors

DFS: Non-tree edges lead to ancestors

Claim: Let T be the tree discovered by DFS, and let (x, y) be an edge of G that is not in T. Then one of x or y is an ancestor of the other.

Proof:

- Let x be the first of the two nodes explored
- Is y explored at beginning of DFS(x)? No.
- At some point during DFS(x), we examine the edge (x, y). Is y explored then? Yes, otherwise we would put (x, y) in T
- \(\Rightarrow y \) was explored during DFS(x)
- \(\Rightarrow y \) is a descendant of x
Graph Representation: Adjacency Lists

Each node keeps list of neighbors

- Each edge stored twice
- Space? $\Theta(m + n)$
- Checking if (u, v) is an edge? $O(\deg(u))$ time (\deg = number of neighbors)

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)

put s in A

while A is not empty do

take a node v from A

if v is not marked "explored" then

mark v "explored"

for each edge (v, w) incident to v do

put w in A \> w is discovered

end for

end if

end while

BFS: A is a queue (FIFO) \> DFS: A is a stack (LIFO)

Can a node be discovered (placed in A) multiple times? Yes.

For DFS, node is explored from parent that added it last (LIFO).

For BFS, can avoid by not adding discovered nodes.

Clicker Question 2

Put s in A

while A is not empty do

take a node v from A

if v is not marked "explored" then

mark v "explored"

for each edge (v, w) incident to v do

put w in A \> w is discovered

end for

end if

end while

What is the maximum number of times a node w can be put in A?

- A: once
- B: $\deg(w)$ times
- C: $2 \cdot \deg(w)$ times
- D: $|V|$ times

Clicker Question 3

DFS(s)

Mark u as "explored"

for each edge (u, v) do

if v is not "explored" then

Call DFS(v) recursively

end if

end for

Put s in A

while A is not empty do

Take a node v from A

if v is not "explored" then

Mark v as "explored"

for each edge (v, w) do

Put w in A

end for

end if

end while

Suppose we have a tree with n nodes, height h and degree d.

Compare recursive and non-recursive DFS in terms of memory used for the stack

- A: recursive: $\Theta(hd)$, non-recursive: $\Theta(h)$
- B: recursive: $\Theta(h)$, non-recursive: $\Theta(d)$
- C: recursive: $\Theta(n)$, non-recursive: $\Theta(hd)$
- D: recursive: $\Theta(h)$, non-recursive: $\Theta(hd)$

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do

Traverse(s) \> Run BFS/DFS starting from s.

Extract connected component containing s

end while

Running time? Does it change?

Naive: $O(m + n)$ per component $\Rightarrow O(c(m + n))$ if c components.

Better: Search on component C only works on nodes/edges in C

- Time for component C: $O(#edges in C + #nodes in C)$
- Total time still $O(m + n)$

Usually OK to assume graph is connected.

State if you are doing so and why it does not trivialize the problem.
Summary

- Graph traversal by BFS/DFS: basic algorithmic primitive used in many other algorithms
 - Is there a path from u to v?
 - Find all connected components
 - Produce trees with different properties, sometimes useful in algorithms
- $\Theta(m + n)$ time
- Different versions of general exploration strategy