COMPSCI 311 Section 1: Introduction to Algorithms Lecture 4: Graphs and BFS

Dan Sheldon

University of Massachusetts

{February 12, 2025}

Graphs: Motivation

- Shortest driving route from Amherst to Florida?
- Number of "degrees of separation" between you and Shohei Otani in online social network?
- ► Find influencers and bots on X/twitter?
- Find reputable web pages?

How do we build algorithms to answer these questions?

Graphs and graph algorithms.

Networks

One week of Enron emails

4

Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Applications

- Networks (real, online, etc.)
 - Shortest driving route from Amherst to Florida
 - Number of "degrees of separation" between you and Tony Fauci
 - Influencers / bots on twitter
 - Reputable pages on web
 - + many more

Basic building block of many other algorithms / analyses

- Image segmentation
- Airplane scheduling
- Program analysis: control flow, function calls
- Playing chess (AI search)
- + many more

Graphs

A graph is a mathematical representation of a network

- Set of nodes (vertices) V
- Set of pairs of nodes (edges) E

 $\mathsf{Graph}\ G = (V, E)$

Notation: n = |V|, m = |E| (almost always)

Definitions:

Edge $e = \{u, v\}$ — but usually written e = (u, v)u and v are *neighbors*, *adjacent*, *endpoints* of e e is *incident* to u and v

Definitions:

A **path** is a sequence $P = v_1, v_2, \ldots, v_{k-1}, v_k$ such that each consecutive pair v_i, v_{i+1} is joined by an edge in G

Path "from v_1 to v_k ". A v_1-v_k path

Clicker

Definitions:

Q: Which is not a path?

- A. UCSB SRI UTAH
- B. LINC MIT LINC CASE
- C. UCSB SRI STAN UCLA UCSB
- D. None of the above

Definitions: Simple path, cycle, distance

Definitions

- **Simple path**: path where all vertices are distinct
- (Simple) Cycle: path $v_1, \ldots, v_{k-1}, v_k$ where

Distance from u to v: minimum number of edges in a u-v path

Definitions:

Connected graph = graph with paths between every pair of vertices.

Connected component?

Definitions

- Connected component: maximal subset of nodes such that a path exists between each pair in the set
- maximal = if a new node is added to the set, there will no longer be a path between each pair

Clicker

Which statement about this graph is false?

- A. Deleting any one edge of the graph must keep it connected
- B. Deleting any two edges of the graph must disconnect it
- C. Deleting any one node (with its edges) keeps it connected
- D. There is a way to delete two nodes (with their edges) and disconnect it, but there is another way to keep it connected.

Definitions

Tree: a connected graph with no cycles

- Q: Is this equivalent to trees you saw in Data Structures?
- A: More or less.
- **Rooted tree**: tree with parent-child relationship
 - Pick root r and "orient" all edges away from root
 - Parent of v = predecessor on path from r to v

Directed Graphs

Graphs can be *directed*, which means that edges point *from* one node *to* another, to encode an asymmetric relationship. We'll talk more about directed graphs later.

Graphs are *undirected* if not otherwise specified.

Thought experiment. World social graph.

- Is it connected?
- If not, how big is largest connected component?
- Is there a path between you and Shohei Otani?

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search

Explore outward from starting node s by distance. "Expanding wave"

Breadth-First Search: Layers

Explore outward from starting node s.

Define layer L_i = all nodes at distance exactly *i* from *s*.

Layers

Observation: There is a path from s to t if and only if t appears in some layer.

Clicker

How many nodes are in layer 2, starting a BFS from MIT ?

- A. 4
- **B**. 5
- **C**. 6

D. None of the above

BFS Layers

BFS Implementation

```
BFS(s):
   mark s as "discovered"
  L[0] \leftarrow \{s\}, i \leftarrow 0
                                                                                                       \triangleright Discover s
  while L[i] is not empty do
       L[i+1] \leftarrow \text{empty list}
       for all nodes v in L[i] do
            for all neighbors w of v do
                                                                                                        \triangleright Explore v
                if w is not marked "discovered" then
                     mark w as "discovered"
                                                                                                       \triangleright Discover w
                     put w in L[i+1]
       i \leftarrow i + 1
```

Running time? How many total times does each line execute?

BFS Running Time

BFS(s):	
mark s as "discovered"	⊳ 1
$L[0] \leftarrow \{s\}, \ i \leftarrow 0$	⊳ 1
while $L[i]$ is not empty do	
$L[i+1] \leftarrow empty list$	$ hinspace \leq n$
for all nodes v in $L[i]$ do	$\triangleright n$
for all neighbors w of v do	$\triangleright 2m$
if w is not marked "discovered" then	$\triangleright 2m$
mark w as "discovered"	$\triangleright n$
put w in $L[i+1]$	$\triangleright n$
$i \leftarrow i + 1$	$ hinspace \leq n$

Running time: O(m+n). Hidden assumption: can iterate over neighbors of v efficiently... OK pending data structure.

BFS Tree

We can use BFS to make a tree. (blue: "tree edges", dashed: "non-tree edges")

BFS Tree

```
BFS(s):
  mark s as "discovered"
  L[0] \leftarrow \{s\}, i \leftarrow 0
  T \leftarrow \mathsf{empty}
  while L[i] is not empty do
      L[i+1] \leftarrow \text{empty list}
      for all nodes v in L[i] do
           for all neighbors w of v do
               if w is not marked "discovered" then
                   mark w as "discovered"
                   put w in L[i+1]
                   put (v, w) in T
      i \leftarrow i + 1
```

BFS Tree

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof

- \blacktriangleright Let (x, y) be an edge
- Assume x is discovered first and placed in L_i
- ▶ Then $y \in L_j$ for $j \ge i$
- ▶ When neighbors of x are explored, y is either already in L_i or L_{i+1} , or is discovered and added to L_{i+1}

Clicker

Suppose in BFS that the nodes in each layer are explored in a different order (e.g. reverse). Which of the following are true?

- A. The nodes that appear in each layer may change
- B. The BFS tree may change
- C. Both A and B
- D. Neither A nor B