Graphs: Motivation

- Shortest driving route from Amherst to Florida?
- Number of “degrees of separation” between you and Tony Fauci in online social network?
- Find influencers and bots on twitter?
- Find reputable web pages?

How do we build algorithms to answer these questions?

Graphs and graph algorithms.
2.2. PATHS AND CONNECTIVITY

Figure 2.2: A network depicting the sites on the Internet, then known as the Arpanet, in December 1970. (Image from F. Heart, A. McKenzie, J. McQuillian, and D. Walden [214]; slide credit: Kevin Wayne / Pearson)

Applications

- Networks (real, online, etc.)
 - Shortest driving route from Amherst to Florida
 - Number of “degrees of separation” between you and Tony Fauci
 - Influencers / bots on twitter
 - Reputable pages on web
 - + many more

- Basic building block of many other algorithms / analyses
 - Image segmentation
 - Airplane scheduling
 - Program analysis: control flow, function calls
 - Playing chess (AI search)
 - + many more

Graphs

A graph is a mathematical representation of a network

- Set of nodes (vertices) \(V \)
- Set of pairs of nodes (edges) \(E \)

Graph \(G = (V, E) \)

Notation: \(n = |V|, m = |E| \) (almost always)

Example: Internet in 1970
Example: Internet in 1970

Definitions:

Edge $e = \{u, v\}$ — but usually written $e = (u, v)$

u and v are neighbors, adjacent, endpoints of e

e is incident to u and v

Clicker

Definitions:

Q: Which is not a path?

A. UCSB - SRI - UTAH
B. LINC - MIT - LINC - CASE
C. UCSB - SRI - STAN - UCLA - UCSB
D. None of the above

Definitions: Simple path, cycle, distance
Definitions

- **Simple path**: path where all vertices are distinct
- **(Simple) Cycle**: path \(v_1, \ldots, v_{k-1}, v_k \) where
 - \(v_1 = v_k \)
 - First \(k-1 \) nodes distinct
 - All edges distinct \((k > 3) \)
- **Distance** from \(u \) to \(v \): minimum number of edges in a \(u-v \) path

Example: Internet in 1970

![Internet graph in 1970](image)

Definitions:

Connected graph = graph with paths between every pair of vertices.

Connected component?

![Connected component](image)

Definitions:

- **Connected component**: maximal subset of nodes such that a path exists between each pair in the set
- **maximal**: if a new node is added to the set, there will no longer be a path between each pair

Clicker

Which statement about this graph is false?

A. Deleting any one edge of the graph must keep it connected
B. Deleting any two edges of the graph must disconnect it
C. Deleting any one node (with its edges) keeps it connected
D. There is a way to delete two nodes (with their edges) and disconnect it, but there is another way to keep it connected.
Definitions

Tree: a connected graph with no cycles

Q: Is this equivalent to trees you saw in Data Structures?
A: More or less.

Rooted tree: tree with parent-child relationship
- Pick root r and “orient” all edges away from root
- Parent of v = predecessor on path from r to v

Directed Graphs

Graphs can be **directed**, which means that edges point from one node to another, to encode an asymmetric relationship. We’ll talk more about directed graphs later.

Graphs are **undirected** if not otherwise specified.

Graph Traversal

Thought experiment. World social graph.
- Is it connected?
- If not, how big is largest connected component?
- Is there a path between you and King Charles III?

How can you tell algorithmically?
Answer: graph traversal! (BFS/DFS)

Breadth-First Search

Explore outward from starting node s by distance. “Expanding wave”
Breadth-First Search: Layers

Explore outward from starting node s.

Define layer L_i = all nodes at distance exactly i from s.

Layers

- $L_0 = \{ s \}$
- L_1 = nodes with edge to L_0
- L_2 = nodes with an edge to L_1 that don’t belong to L_0 or L_1
- ...
- L_{i+1} = nodes with an edge to L_i that don’t belong to any earlier layer.

Observation: There is a path from s to t if and only if t appears in some layer.

Clicker

How many nodes are in layer 2, starting a BFS from MIT?

A. 4
B. 5
C. 6
D. None of the above

BFS Implementation

BFS(s):
1. mark s as "discovered"
2. $L[0] \leftarrow \{ s \}$, $i \leftarrow 0$
3. while $L[i]$ is not empty do
 a. $L[i+1] \leftarrow$ empty list
 b. for all nodes v in $L[i]$ do
 i. if w is not marked "discovered" then
 a. mark w as "discovered"
 b. w in $L[i+1]$
 end for
 c. $i \leftarrow i + 1$
end while

Running time? How many total times does each line execute?
BFS Running Time

BFS(s):
mark s as "discovered" ▷ 1
$L[0] \leftarrow \{s\}, i \leftarrow 0$ ▷ 1
while $L[i]$ is not empty do
L[i + 1] ← empty list ▷ ≤ n
for all nodes v in $L[i]$ do ▷ n
 for all neighbors w of v do ▷ 2m
 if w is not marked "discovered" then ▷ n
 mark w as "discovered" ▷ n
 put w in $L[i + 1]$ ▷ n
 i ← i + 1 ▷ ≤ n

Running time: $O(m + n)$. Hidden assumption: can iterate over neighbors of v efficiently... OK pending data structure.

BFS Tree

We can use BFS to make a tree. (blue: "tree edges", dashed: "non-tree edges")

Claim: let T be the tree discovered by BFS on graph $G = (V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.
BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph $G = (V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof

- Let (x, y) be an edge
- Assume x is discovered first and placed in L_i
- Then $y \in L_j$ for $j \geq i$
- When neighbors of x are explored, y is either already in L_i or L_{i+1}, or is discovered and added to L_{i+1}