Clicker

Suppose f is $O(g)$. Which of the following is true?

A. g is $O(f)$
B. g is not $O(f)$
C. g may be $O(f)$, depending on the particular functions f and g

Limitations of Big-O

- $10 \log(n)$ is $O(\log n)$, but also $O(n)$, $O(n^2)$, $O(n^3)$, ...
- $4n^2 + 10n + 100$ is $O(n^2)$, but also $O(n^3)$, $O(n^4)$, $O(n^5)$, ...

Big-Ω Motivation

Algorithm foo

\begin{verbatim}
for $i = 1$ to n
 for $j = 1$ to n
 do something...
\end{verbatim}

Fact: run time is $O(n^3)$

Algorithm bar

\begin{verbatim}
for $i = 1$ to n
 for $j = 1$ to n
 for $k = 1$ to n
 do something else..
\end{verbatim}

Fact: run time is $O(n^3)$

Conclusion: foo and bar have the same asymptotic running time. What is wrong?
More Big-Ω Motivation

Algorithm **sum-product**

```plaintext
sum = 0
for i= 1 to n do
  for j= i to n do
    sum += A[i]*A[j]
```

What is the running time of **sum-product**?

Easy to see it is $O(n^2)$. Could it be better? $O(n)$?

Big-Ω

Informally: T grows at least as fast as f

Definition: The function $T(n)$ is $\Omega(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that

$$T(n) \geq cf(n)$$

for all $n \geq n_0$

f is an **asymptotic lower bound** for T

Big-Ω Examples

$$4n + 10 = \Omega(n)$$

$$\frac{1}{2}n^2 = \Omega(n^2)$$

Clicker

Claim $n - 10$ is $\Omega(n)$

To prove this we need to show that

$$n - 10 \geq cn$$

for all $n \geq n_0$

Clicker. What is the largest value of c below for which we can find some n_0 to make this statement true?

A. $c = 0.5$
B. $c = 0.99$
C. $c = 2$
D. $c = 20$
Big-Ω

Exercise: let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega(n^2)$

Algorithm sum-product
\[
\text{sum} = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = i \text{ to } n \text{ do} \\
\quad \quad \text{sum} += A[i] \times A[j]
\]

Solution

Hard way
- Count exactly how many times the loop executes
\[
1 + 2 + \ldots + n = \frac{n(n + 1)}{2} = \Omega(n^2)
\]

Easy way
- Ignore all loop executions where $i > n/2$ or $j < n/2$
- The inner statement executes at least $(n/2)^2 = \Omega(n^2)$ times

Big-Θ

Definition: the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and $\Omega(f(n))$.

f is an asymptotically tight bound of T

Example. $T(n) = 32n^2 + 17n + 1$
- $T(n)$ is $\Theta(n^2)$
- $T(n)$ is neither $\Theta(n)$ nor $\Theta(n^3)$

Big-Θ example

How do we correctly compare the running time of these algorithms?

Algorithm foo
\[
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } n \text{ do} \\
\quad \quad \text{do something...}
\]

Algorithm bar
\[
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } n \text{ do} \\
\quad \quad \text{for } k = 1 \text{ to } n \text{ do} \\
\quad \quad \quad \text{do something else...}
\]

Answer: foo is $\Theta(n^2)$ and bar is $\Theta(n^3)$. They do not have the same asymptotic running time.
Additivity Revisited

Suppose f and g are two (non-negative) functions and f is $O(g)$

Old version: Then $f + g$ is $O(g)$
New version: Then $f + g$ is $\Theta(g)$

$\frac{n^2}{g} + 42n + n \log n$ is $\Theta(n^2)$

Efficiency

When is an algorithm efficient?

Stable Matching Brute force: $\Omega(n!)$
Propose-and-Reject?: $O(n^2)$

We must have done something clever

Polynomial Time

Definition: an algorithm runs in polynomial time if its running time is $O(n^d)$ for some constant d

Polynomial Time: Examples

These are polynomial time:

- $f_1(n) = n$
- $f_2(n) = 4n + 100$
- $f_3(n) = n \log(n) + 2n + 20$
- $f_4(n) = 0.01n^2$
- $f_5(n) = n^2$
- $f_6(n) = 20n^2 + 2n + 3$

Not polynomial time:

- $f_7(n) = 2^n$
- $f_8(n) = 3^n$
- $f_9(n) = n!$
Why Polynomial Time?

Why is this a good definition of efficiency?

- Matches practice: almost all practically efficient algorithms have this property.
- Usually distinguishes a clever algorithm from a “brute force” approach.
- Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.

Algorithm Print1(n)

for i=1 to n do
 print “X”
for j=1 to n do
 print “Y”

What is the output of this algorithm with n = 4? (ignore spaces)
A. XYYY XYYY XYYY
B. XXXX YYYY YYYY YYYY
C. XYYYY XYYYY YYYY YYYY
D. XYYYYY XYYYYY XYYYYY

What is the exact number of characters printed as a function of n?
A. n
B. n^2
C. n^2 − n
D. n^2 + n

Bonus if Time: Clicker Fun
Algorithm Print1(n)
for i=1 to n do
 print “X”
 for j=1 to n do
 print “Y”

The running time is:
A. $\Omega(\sqrt{n})$
B. $\Theta(n^2)$
C. $O(n^4)$
D. all of the above

Algorithm Print2(n)
for i=1 to n do
 print “X”
 if i == 1 then
 for j=1 to n do
 print “Y”

What is the output of this algorithm with $n=4$? (ignore spaces)
A. XXXX YYYY YYYY YYYY YYYY
B. XYYYY XYYYY XYYYY XYYYY
C. XYYYY X X X
D. XYYYYY XYYYYY XYYYYY XYYYY

Algorithm Print2(n)
for i=1 to n do
 print “X”
 if i == 1 then
 for j=1 to n do
 print “Y”

What is the exact number of characters printed as a function of n?
A. n
B. $2n$
C. $n^2 - n$
D. n^2

Algorithm Print2(n)
for i=1 to n do
 print “X”
 if i == 1 then
 for j=1 to n do
 print “Y”

What is the tight running-time bound of the algorithm?
A. $\Theta(\log n)$
B. $\Theta(n)$
C. $\Theta(n^2)$
D. $\Theta(n^3)$