Suppose \(f \) is \(O(g) \). Which of the following is true?

A. \(g \) is \(O(f) \)
B. \(g \) is not \(O(f) \)
C. \(g \) may be \(O(f) \), depending on the particular functions \(f \) and \(g \)

Limitations of Big-O

- \(10 \log(n) \) is \(O(\log n) \), but also \(O(n), O(n^2), O(n^3), \ldots \)
- \(4n^2 + 10n + 100 \) is \(O(n^2) \), but also \(O(n^3), O(n^4), O(n^5), \ldots \)

Big-\(\Omega \) Motivation

Algorithm `foo`
```plaintext
for i=1 to n do
  for j=1 to n do
    do something...
```
Fact: run time is \(O(n^3) \)

Algorithm `bar`
```plaintext
for i=1 to n do
  for j=1 to n do
    for k=1 to n do
      do something else..
```
Fact: run time is \(O(n^3) \)

Conclusion: `foo` and `bar` have the same asymptotic running time. What is wrong?

Big-\(\Omega \)

Informally: \(T \) grows at least as fast as \(f \)

Definition: The function \(T(n) \) is \(\Omega(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that

\[
T(n) \geq cf(n) \text{ for all } n \geq n_0
\]

\(f \) is an asymptotic lower bound for \(T \)

Algorithm `sum-product`
```plaintext
sum = 0
for i=1 to n do
  for j=i to n do
    sum += A[i]*A[j]
```
What is the running time of `sum-product`?

Easy to see it is \(O(n^2) \). Could it be better? \(O(n) \)?
Big-Ω Examples

\[4n + 10 = \Omega(n) \]
\[\frac{1}{2}n^2 = \Omega(n^2) \]

Clicker

Claim \(n - 10 \) is \(\Omega(n) \)

To prove this we need to show that \(n - 10 \geq cn \) for all \(n \geq n_0 \).

Clicker. What is the largest value of \(c \) below for which we can find some \(n_0 \) to make this statement true?

A. \(c = 0.5 \)
B. \(c = 0.99 \)
C. \(c = 2 \)
D. \(c = 20 \)

Big-Ω

Exercise: let \(T(n) \) be the running time of **sum-product**. Show that \(T(n) \) is \(\Omega(n^2) \)

Algorithm **sum-product**

\[
\text{sum} = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\hspace{1cm} \text{for } j = i \text{ to } n \text{ do} \\
\hspace{2cm} \text{sum} += A[i] \times A[j]
\]

Solution

Hard way

- Count exactly how many times the loop executes

\[1 + 2 + \ldots + n = \frac{n(n + 1)}{2} = \Omega(n^2) \]

Easy way

- Ignore all loop executions where \(i > n/2 \) or \(j < n/2 \)
- The inner statement executes at least \((n/2)^2 = \Omega(n^2) \) times

Big-Θ

Definition: the function \(T(n) \) is \(\Theta(f(n)) \) if it is both \(O(f(n)) \) and \(\Omega(f(n)) \). \(f \) is an asymptotically tight bound of \(T \)

Example. \(T(n) = 32n^2 + 17n + 1 \)

- \(T(n) \) is \(\Theta(n^2) \)
- \(T(n) \) is neither \(\Theta(n) \) nor \(\Theta(n^3) \)

Big-Θ example

How do we correctly compare the running time of these algorithms?

Algorithm **foo**

\[
\text{for } i = 1 \text{ to } n \text{ do} \\
\hspace{1cm} \text{for } j = 1 \text{ to } n \text{ do} \\
\hspace{2cm} \text{do something...}
\]

Algorithm **bar**

\[
\text{for } i = 1 \text{ to } n \text{ do} \\
\hspace{1cm} \text{for } j = 1 \text{ to } n \text{ do} \\
\hspace{2cm} \text{for } k = 1 \text{ to } n \text{ do} \\
\hspace{3cm} \text{do something else...}
\]

Answer: **foo** is \(\Theta(n^2) \) and **bar** is \(\Theta(n^3) \). They do not have the same asymptotic running time.
Additivity Revisited

Suppose f and g are two (non-negative) functions and f is $O(g)$

Old version: Then $f + g$ is $O(g)$
New version: Then $f + g$ is $\Theta(g)$

\[
\frac{n^2 + 42n + n \log n}{g} \text{ is } \Theta(n^2)
\]

Efficiency

When is an algorithm efficient?

Stable Matching Brute force: $\Omega(n!)$
Propose-and-Reject?: $O(n^2)$

We must have done something clever

Polynomial Time

Definition: an algorithm runs in polynomial time if its running time is $O(n^d)$ for some constant d

Polynomial Time: Examples

These are polynomial time:

- $f_1(n) = n$
- $f_2(n) = 4n + 100$
- $f_3(n) = n \log(n) + 2n + 20$
- $f_4(n) = 0.01n^2$
- $f_5(n) = n^2$
- $f_6(n) = 20n^2 + 2n + 3$

Not polynomial time:

- $f_7(n) = 2^n$
- $f_8(n) = 3^n$
- $f_9(n) = n!$

Why Polynomial Time?

Why is this a good definition of efficiency?

- Matches practice: almost all practically efficient algorithms have this property.
- Usually distinguishes a clever algorithm from a “brute force” approach.
- Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.

Bonus if Time: Clicker Fun
Algorithm Print1(n)

```plaintext
for i=1 to n do
    print "X"
for j=1 to n do
    print "Y"
```

What is the output of this algorithm with $n = 4$? (ignore spaces)

A. XXXX YYYY YYYY YYYY YYYY
B. XYYYY YYYY YYYY YYYY YYYY YYYY
C. XYYYY YYYY YYYY YYYY YYYY YYYY
D. XYYYY YYYY YYYY YYYY YYYY YYYY

What is the exact number of characters printed as a function of n?

A. n
B. n^2
C. $n^2 - n$
D. $n^2 + n$

Algorithm Print2(n)

```plaintext
for i=1 to n do
    print "X"
if i == 1 then
    for j=1 to n do
        print "Y"
```

What is the tight running-time bound of the algorithm?

A. $\Omega(\sqrt{n})$
B. $\Theta(n^2)$
C. $O(n^4)$
D. $\Theta(n^3)$

Algorithm Print3(n)

```plaintext
for i=1 to n do
    print "X"
if i == 1 then
    for j=1 to n do
        print "Y"
```

What is the output of this algorithm with $n = 4$? (ignore spaces)

A. XXXX YYYY YYYY YYYY YYYY
B. XYYYY YYYY YYYY YYYY YYYY
C. XYYYY YYYY YYYY YYYY YYYY
D. XYYYY YYYY YYYY YYYY YYYY

What is the exact number of characters printed as a function of n?

A. n
B. $2n$
C. $n^2 - n$
D. n^2