Algorithm design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm’s running time

Big-O: Motivation

What is the running time of this algorithm? How many “primitive steps” are executed for an input array A of size n?

```plaintext
sum = 0
n ← length of array A
for i = 1 to n do
    for j = 1 to n do
        sum += A[i]*A[j]
    end for
end for
```

The (worst-case) running time as a function of n is

$$T(n) = 2n^2 + n + 2.$$

We would like to coarsely categorize this as $O(n^2)$ — that is, ignore low-order terms and constant multipliers.

Big-O: Formal Definition

Definition: The function $T(n)$ is $O(f(n))$ if there exist constants $c \geq 0$ and $n_0 \geq 0$ such that

$$T(n) \leq cf(n) \text{ for all } n \geq n_0$$

We say that f is an asymptotic upper bound for T.

Example:

$$T(n) = 2n^2 + n + 2 \leq 2n^2 + n^2 + 2n^2 \text{ if } n \geq 1$$

$$T(n) \leq \frac{5}{c}n^2 \text{ if } n \geq \frac{1}{n_0}$$

So $T(n)$ is $O(n^2)$

Big-O: Examples

Claim $n^2 + 10^6n$ is $O(n^2)$

To prove this we need to show that

$$n^2 + 10^6n \leq cn^2 \text{ for all } n \geq n_0$$

Clicker. Which values of c and n_0 make this inequality true?

A. $c = 2$, $n_0 = 10^6$
B. $c = 10^6 + 1$, $n_0 = 1$
C. Both A and B
D. Neither A nor B

Big-O: Examples

- If $T(n) = n^2 + 1000000n$ then $T(n)$ is $O(n^2)$
- If $T(n) = n^3 + n \log n$ then $T(n)$ is $O(n^3)$
- If $T(n) = 2\sqrt{n}$ then $T(n)$ is $O(n)$
The Big Idea: How to Use Big-O

Study pseudocode to determine running time $T(n)$ of an algorithm as a function of n:

$$T(n) = 2n^2 + n + 2$$

Prove that $T(n)$ is asymptotically upper-bounded by simpler function using big-O definition:

$$T(n) = 2n^2 + n + 2$$

$$\leq 2^2 + n^2 + 2n^2 \quad \text{if} \ n \geq 1$$

$$\leq 5n^2 \quad \text{if} \ n \geq 1$$

This is the right way to think about big-O, but too much work. We’ll develop properties of big-O that simplify proving big-O bounds, and use these properties to take shortcuts while analyzing algorithms (you probably learned the shortcuts without knowing formal justification).

Properties of Big-O Notation

Claim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$.

Example:

- $2n^2 + n + 1 \leq c(n^2)$
- $n^2 \leq c'(n)$
- Therefore, $2n^2 + n + 1$ is $O(n^3)$

Transitivity Proof

Claim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$.

Proof: we know from the definition that

$\begin{align*}
&f(n) \leq cg(n) \quad \text{for all} \ n \geq n_0 \\
g(n) \leq c'h(n) \quad \text{for all} \ n \geq n'_0
\end{align*}$

Therefore

$$f(n) \leq cg(n) \quad \text{if} \ n \geq n_0$$

$$\leq c(c'h(n)) \quad \text{if} \ n \geq n_0 \text{ and } n \geq n'_0$$

$$= c^{c'}h(n) \quad \text{if} \ n \geq \max\{n_0, n'_0\}$$

$$f(n) \leq c^{c'}h(n) \quad \text{if} \ n \geq n'_0$$

Know how to do proofs using Big-O definition.

Properties of Big-O Notation

Claims (Additivity):

- If f is $O(h)$ and g is $O(h)$, then $f + g$ is $O(h)$.

$$\frac{3n^2 + n^2}{O(n^2)} \leq c(n^3)$$

- If f is $O(g)$, then $f + g$ is $O(g)$

$$\frac{n^3 + 23n + n \log n}{g(n)} \leq c(n^3)$$

Significance of Additivity

- OK to drop lower order terms:

$$2n^3 + 10n^3 + 4n \log n + 1000n \leq O(n^3)$$

- Polynomials: Only highest-degree term matters. If $a_d > 0$ then:

$$a_0 + a_1 n + a_2 n^2 + \ldots + a_d n^d \leq O(n^d)$$

- You are using additivity when you ignore the running time of statements outside for loops!
Other Useful Facts: Log vs. Poly vs. Exp

Fact: \(\log_b(n) = O(n^d) \) for all \(b, d > 0 \)

All polynomials grow faster than logarithm of any base

Fact: \(n^d = O(r^n) \) when \(r > 1 \)

Exponential functions grow faster than polynomials

Logarithm review

Definition: \(\log_b(a) \) is the unique number \(c \) such that \(b^c = a \)

Informally: the number of times you can divide \(a \) into \(b \) parts until each part has size one

Properties:
- Log of product → sum of logs
 - \(\log(xy) = \log x + \log y \)
 - \(\log(x^k) = k \log x \)
- \(\log_b(\cdot) \) is inverse of \(b^{\cdot} \)
 - \(\log_b(b^x) = x \)
 - \(b^{\log_b(n)} = n \)
- \(\log_a n = \log_b b \cdot \log_b n \) (logs in any two bases are proportional)

When using big-O, it’s OK not to specify base. Assume \(\log_2 \) if not specified.

Big-O comparison

Which grows faster?

\[n(\log n)^3 \ vs. \ n^{4/3} \]

simplifies to

\[(\log n)^3 \ vs. \ n^{1/3} \]

simplifies to

\[\log n \ vs. \ n^{1/3} \]

We know \(\log n \) is \(O(n^d) \) for all \(d \)

\[\Rightarrow \log n \ is \ O(n^{1/3}) \]

\[\Rightarrow n(\log n)^3 \ is \ O(n^{4/3}) \]

Apply transformations (monotone, invertible) to both functions. Try taking log.

Big-O: Correct Usage

Big-O: a way to categorize growth rate of functions relative to other functions.

Not: “the running time of my algorithm”.

Correct Usage:
- The worst-case running time of the algorithm in input of size \(n \) is \(T(n) \).
- \(T(n) \) is \(O(n^3) \).
- The running time of the algorithm is \(O(n^3) \).

Incorrect Usage:
- \(O(n^3) \) is the running time of the algorithm. (There are many different asymptotic upper bounds to the running time of the algorithm.)