
COMPSCI 311 Section 1: Introduction to Algorithms

Dan Sheldon

University of Massachusetts

{Last Compiled: February 4, 2025}

CS 311: Intro to Algorithms

Please sign up at classquestion.com/students with class code XZCDN

▶ Instructor: Dan Sheldon
▶ Where: ILC S131
▶ When: M/W 2:30–3:45pm
▶ Discussion Sections: F 9:05–9:55 LGRC A104A, F 10:10–11:00 LGRT 121, F

12:20–1:10 Ag Engineering 119, F 1:25–2:15 CS 145 (Please stick to assigned
section)

▶ TAs: Md Abdual Aowal, Miguel Fuentes, Purna Dutta
▶ Office hours: TBA, see list on Campuswire

Run jointly with Section 2 (Prof. Minea): same TAs, HW, exams, Canvas, Campuswire,
Gradescope

classquestion.com/students

What is Algorithm Design?

How do you write a computer program to solve a complex problem?

▶ Computing similarity between DNA sequences
▶ Routing packets on the Internet
▶ Scheduling final exams at a college
▶ Assign medical residents to hospitals
▶ Find all occurrences of a phrase in a large collection of documents
▶ Finding the smallest number of coffee shops that can be built in the US such that

everyone is within 20 minutes of a coffee shop.

DNA sequence similarity

▶ Input: two n-bit strings s1 and s2

▶ s1 = AGGCTACC
▶ s2 = CAGGCTAC

▶ Output: minimum number of insertions/deletions to transform s1 into s2

▶ Algorithm: ????

▶ Even if the objective is precisely defined, we are often not ready to start coding
right away!

What is Algorithm Design?

▶ Step 1: Formulate the problem precisely
▶ Step 2: Design an algorithm
▶ Step 3: Prove the algorithm is correct
▶ Step 4: Analyze its running time

Important: this is an iterative process, e.g., sometimes you’ll even want to redesign the
algorithm to make it easier to prove that it is correct.

Course Goals

▶ Learn how to apply the algorithm design process. . . by practice!
▶ Learn specific algorithm design techniques

▶ Greedy
▶ Divide-and-conquer
▶ Dynamic Programming
▶ Network Flows

▶ Learn to communicate precisely about algorithms
▶ Proofs, reading, writing, discussion

▶ Prove when no exact efficient algorithm is possible
▶ Intractability and NP-completeness

Prerequisites: CICS 210 and 250

▶ Familiarity with:
▶ data structures (lists, stacks, queues, . . .)
▶ mathematical objects (sets, lists, relations, partial orders)
▶ recursion: many algorithm design patterns based on recursion
▶ proofs: correctness of algorithms. contradiction, induction, . . .

Course Information
Course websites:

people.cs.umass.edu/~sheldon/teaching/
cs311/

Slides, homework, course
information/policies, pointers to all
other pages

classquestion.com In-class “clicker” questions
Canvas: umamherst.instructure.com Solutions, grades
campuswire.com Discussion forum, contacting instructors

and TAs
gradescope.com Submitting and returning homework

Announcements: Check UMass email / Campuswire regularly for course
announcements.

people.cs.umass.edu/~sheldon/teaching/cs311/
people.cs.umass.edu/~sheldon/teaching/cs311/
classquestion.com
umamherst.instructure.com
campuswire.com
gradescope.com

A Week in the Life of CS 311

Mon Lecture (classquestion), weekly homework due 11:59pm
Wed Lecture (classquestion)
Thu Challenge problems (due 11:59pm) OR midterm exam 7–9pm
Fri Discussion section (worksheets, submit by 6pm)

Weekly Homework (Gradescope Online Assignments)

Weekly Homework (Gradescope Online Assignments)

▶ due most Mondays. HW 1 released tomorrow, due Monday 2/10

▶ focused on specific learning goal mastery
(see detailed learning goals on course page)

▶ midterms will look similar

▶ Collaboration: OK to ask for help on how to solve a problem, but do them on your
own. Copying, sharing, or viewing any solutions that are not your own (including
AI) is a violation of course policy (and you won’t learn what you need to know for
midterms)

https://people.cs.umass.edu/~sheldon/teaching/cs311/index.html#detailed-learning-goals

Challenge Problems

Challenge Problems

▶ Solutions typed or written neatly and uploaded to Gradescope as high-quality pdf

▶ Usually involve designing an algorithm and proving it correct

▶ Choose which problems to submit
(at least one per assignment)

▶ Graded as one of x, ✓–, ✓, or ✓+ using rubric on course web page.
▶ ✓ and ✓+ indicate mastery (fairly high standards)
▶ contribute to grade as follows

Grade Criteria

A+ Complete at least 14 challenge problems with ✓ or better; including at least
7 with ✓+

A Complete at least 12 challenge problems with ✓ or better; including at least
6 with ✓+

B Complete at least 8 challenge problems with ✓ or better; including at least 4
with ✓+

C Complete at least 6 challenge problems with a ✓
D Complete at least 6 challenge problems with a ✓- or better; including at

least 3 with a ✓

▶ Don’t need to complete every problem, so focus on high-quality solutions to ones
you can solve

▶ No benefit to guessing, vague answers

▶ Collaboration OK (e.g. discuss problem, generate ideas, work on whiteboard), but
read/attempt on your own first. The written solution must be your own. Looking
at written solutions that are not your own (other students, web, AI) is considered
cheating. There will be formal action if cheating is suspected. List collaborators
and any printed or online sources at the top of each assignment.

Grading Breakdown

▶ Participation (10%): discussion section (7%), lecture participation via classquestion (3%)
▶ Homework (12.5%): ~8–10 weekly assignments
▶ Challenge problems: (25%): 6 assigments, roughly bi-weekly
▶ Challenge problem self-assessments (2.5%): Review solutions and post self-assessment

of your challenge problems solutions after due date
▶ Midterms 1, 2, 3 (10% each): each covers about one quarter of the course
▶ Final (20%): covers all course materials

Late Policies

▶ Homework and challenge problems: Submit via Gradescope by 11:59pm on due
date.
▶ Late: no credit
▶ Each student is allowed to submit three assignments up to 24 hours late without

penalty
▶ At most one late day per assignment (solutions posted after 24 hours)

Collaboration and Academic Honesty

▶ Homework and challenge problems: see above (no AI!)

▶ Discussions: Groups for the discussion section exercises will be assigned randomly
at the start of each session. You must complete the discussion session exercise with
your assigned group.

▶ Exams: Closed book and no electronics.

▶ Formal action will be pursued for suspected cheating. Penalty may be an F in
course.

▶ If in doubt whether something is allowed, ask!

Stable Matching Problem

Matching applicants to medical residency programs:

▶ m applicants
▶ n slots at hospitals
▶ Applicants have preferences over hospitals and vice versa
▶ National Resident Matching Program (nrmp.org) makes matches

What is a “good” way to match applicants to programs?

▶ economists: matching should be stable. no incentive to switch
▶ Gale-Shapley algorithm

Lloyd Shapley. Stable matching theory and Gale–Shapley algorithm.

 
 
 
 
 
 
 
Alvin Roth. Applied Gale–Shapley to matching med-school students with

hospitals, students with schools, and organ donors with patients.

2012 Nobel Prize in Economics

31

Lloyd Shapley

original applications: 
college admissions and

opposite-sex marriage

Alvin Roth

slide credit: Kevin Wayne / Pearson

Problem formulation (colleges and students)
Input:

▶ n colleges
▶ n students
▶ preference lists

Output: a stable matching. But what does this mean?

Matching:

▶ assignment of students to colleges
▶ set M of college-student pairs, each college/student in one pair

Instability or unstable pair in a matching: an unmatched pair that prefer each other to
their assigned matches

Stable matching: matching with no instabilities

Goal: output a stable matching

Clicker

Colleges

a: 1 2 3
b: 2 1 3
c: 1 2 3

Students

1: b a c
2: a b c
3: a b c

Which pair is an instability (unstable pair) with respect to the matching
{(a, 1), (b, 3), (c, 2)} (marked in bold above)

A. (a, 2)
B. (b, 1)
C. (b, 3)
D. none of the above

Examples
Do stable matchings always exist? Are they unique?

Example 1: universal prefs
Colleges

a: 1 2
b: 1 2

Students

1: a b
2: a b

▶ M = {(a, 1), (b, 2)}? stable
▶ M = {(a, 2), (b, 1)}? not stable

Examples

Example 2: inconsistent prefs

Colleges

a: 1 2
b: 2 1

Students

1: b a
2: a b

Clicker: Which matching is stable?

A. M = {(a, 1), (b, 2)}
B. M = {(a, 2), (b, 1)}
C. neither
D. both

▶ Answer: D, both are stable
▶ Fact: there can be multiple stable

matchings

Toward an Algorithm

Let’s use a slightly bigger example to try to develop an algorithm.

Colleges

a: 1 2 3
b: 2 1 3
c: 1 3 2

Students

1: c a b
2: a b c
3: a b c

Idea: build M incrementally. What should colleges do? What should students do?

Summary

▶ Unmatched colleges take turns offering to students and propose in order of
preference

▶ Students tentatively accept first offer and then “trade up” if they receive better
offers

Propose-and-Reject (Gale-Shapley) Algorithm

Initially all colleges and students are free
while some college is free and hasn’t made offers to every student do

Choose such a college c
Let s be the highest ranked student to whom c has not offered
if s is free then

c and s become matched
else if s is matched to c′ but prefers c to c′ then

c′ becomes unmatched
c and s become matched

else ▷ s prefers c′

s rejects c and c remains free

Analyzing the Algorithm

Goal: prove that the algorithm always returns a stable matching

Initial observations:

▶ (F1) Students accept their first offer, after which they stay matched and only
“upgrade” during the algorithm

▶ (F2) Colleges propose to students sequentially in order of preferences.

Termination

Does the algorithm terminate?

a: 1 2 3
b: 2 1 3
c: 1 3 2

▶ in each round, some college proposes to a new student in their list (by F2)
▶ at most n2 proposals =⇒ at most n2 rounds

Are all colleges and students matched?

Yes. Suppose, for contradiction that college c and student s are unmatched at the end
of the algorithm.

▶ s was never matched during the algorithm (by F1)

▶ But c proposed to every student (by F2 and termination condition)

▶ When c proposed to s, she was unmatched and yet rejected c. Contradiction!

Can we guarantee the resulting allocation is stable?

Yes! Proof by contradiction

▶ Suppose there is an instability (c, s)
▶ c is matched to s′ but prefers s to s′

▶ s is matched to c′ but prefers c to c′

▶ Did c offer to s? Yes, by (F2), since c offered to s′ who is ranked lower

▶ Did s accept offer from c? Maybe initially, but s must eventually reject c for
another college, and, by (F1), s prefers final college c′ to c

▶ Contradiction!

For Next Time

▶ Think about: would it be better or worse for the students if we ran the algorithm
with the students proposing?

▶ Read: Chapter 1, course policies

▶ Visit course webpages: canvas, Campuswire, etc.

