Problem 1. Network Flow. What is the value of the maximum flow from s to t in the following graph? Use cuts to determine the answer.

Problem 2. Implications of polynomial-time reductions. Remember that Problem Y is polynomial-time reducible to Problem X if there is an algorithm for solving Problem Y that looks like this:

```
solveY(yInput)
  Construct xInput
  foo = solveX(xInput)
  return yes/no based on foo
```

This means we can solve any instance of Problem Y using a black-box solver for Problem X and at most a polynomial amount of additional work.

Last week we showed that Bipartite-Matching is polynomial-time reducible to Network-Flow (we would write this as Bipartite-Matching \leq_p Network-Flow). We know that there is a polynomial-time algorithm for Network-Flow (an efficient variant the Ford-Fulkerson algorithm). What does this imply about Bipartite-Matching?

(a) There is a polynomial-time algorithm for Bipartite-Matching.
(b) There is no polynomial-time algorithm for Bipartite-Matching.
(c) Nothing

Now consider a different pair of problems: Multipartite-Batching and Fletwork-Know, where, like their counterparts above, Multipartite-Batching is polynomial-time reducible to Fletwork-Know (that is, Multipartite-Batching \leq_p Fletwork-Know). Suppose now that you prove that there is no polynomial-time algorithm for Multipartite-Batching. What does this imply about Fletwork-Know?

(a) There is a polynomial-time algorithm for Fletwork-Know.
(b) There is no polynomial-time algorithm for Fletwork-Know.
(c) Nothing

Explain your answer.
Problem 3. Interval Scheduling. K&T Chapter 8, Exercise 1. For each of the questions below, decide whether the answer is (i) “Yes”, (ii) “Unlikely, because it would show that an NP-complete problem can be solved in polynomial time, which would prove that P = NP”. Explain your answer.

Let’s define the decision version of the Interval Scheduling Problem from Chapter 4 as follows: Given a collection of intervals on a time-line, and a bound \(k \), does the collection contain a subset of nonoverlapping intervals of size at least \(k \)?

(Hint: you may use the fact that Vertex Cover and Independent Set are NP-complete. Also, recall that reductions are transitive: if \(Y \leq_p X \) and \(X \leq_p U \), then \(Y \leq_p U \).)

1. Question: Is it the case that Interval Scheduling \(\leq_p \) Independent Set?
2. Question: Is it the case that Interval Scheduling \(\leq_p \) Vertex Cover?
3. Question: Is it the case that Independent Set \(\leq_p \) Interval Scheduling?

Problem 4. Diverse Subset. K&T Chapter 8, Exercise 2. A store trying to analyze the behavior of its customers will often maintain a two-dimensional array \(A \), where the rows correspond to its customers and the columns correspond to the products it sells. The entry \(A[i, j] \) specifies the quantity of product \(j \) that has been purchased by customer \(i \).

Here’s a tiny example of such an array \(A \).

<table>
<thead>
<tr>
<th></th>
<th>detergent</th>
<th>beer</th>
<th>diapers</th>
<th>cat litter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raj</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Alanis</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chelsea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

One thing that a store might want to do with this data is the following. Let us say that a subset \(S \) of the customers is diverse if no two of the of the customers in \(S \) have ever bought the same product (i.e., for each product, at most one of the customers in \(S \) has ever bought it). A diverse set of customers can be useful, for example, as a target pool for market research.

We can now define the DIVERSE-SUBSET Problem as follows: Given an \(m \times n \) array \(A \) as defined above, and a number \(k \leq m \), is there a subset of at least \(k \) of customers that is diverse?

Show that \(\text{INDEPENDENT SET} \leq_p \text{DIVERSE-SUBSET} \) (read: \(\text{INDEPENDENT SET} \) is polynomial-time reducible to \(\text{DIVERSE-SUBSET} \)).

(Since \(\text{INDEPENDENT-SET} \) is NP-complete, this can be used to show that \(\text{DIVERSE-SUBSET} \) is also NP-complete.)