You will be randomly assigned groups to work on these problems in discussion section.

Problem 1. Master theorem. Solve the following recurrences using the Master theorem:

(a) \(T(n) = 4T(n/5) + O(n) \)
(b) \(T(n) = 5T(n/4) + O(n) \)
(c) \(T(n) = 16T(n/2) + O(n^3) \)
(d) \(T(n) = 16T(n/2) + O(n^4) \)
(e) \(T(n) = 16T(n/2) + O(n^5) \)

Problem 2. Choosing between algorithms. Suppose you are choosing between the following three algorithms:

- Algorithm \(A \) solves problems by dividing them into five subproblems of half the size, recursively solving each subproblem, and then combining the solutions in linear time.
- Algorithm \(B \) solves problems of size \(n \) by recursively solving two subproblems of size \(n - 1 \) and then combining the solutions in constant time.
- Algorithm \(C \) solves problems of size \(n \) by dividing them into nine subproblems of size \(n/3 \), recursively solving each subproblem, and then combining the solutions in \(O(n^2) \) time.

What are the running times of each of these algorithms (in big-O notation), and which would you choose?
Problem 3. Proof by Induction for Recurrences. Consider the following recurrence, which describes an algorithm that divides a problem of size n into two equal-sized subproblems, but then does $O(n \log n)$ outside of the recursive calls:

$$T(n) \leq 2T(n/2) + cn \log n,$$

We again assume the recurrence holds for $n \geq 2$ and that $T(2) \leq c$. Prove by induction that $T(n) \leq cn(\log n)^2$. Hint: see p. 213 of the book and slides from Lecture 11. The algebra for this proof is slightly longer but follows the same pattern.
Problem 4. Maximum Independent Set. Let $G = (V, E)$ be an undirected graph with n nodes. Recall that a subset of the nodes is called an independent set if no two of them are joined by an edge. Finding large independent sets is difficult in general; but here we'll see that it can be done efficiently if the graph is "simple" enough.

Call a graph $G = (V, E)$ a path if its nodes can be written as v_1, v_2, \ldots, v_n with an edge between v_i and v_j if and only if the numbers i and j differ by exactly 1. With each node v_i, we associate a positive integer weight w_i.

Consider, for example, the following five-node path. The weights are the numbers drawn inside the nodes.

```
1 8 6 3 6
```

The goal in this question is to solve the following problem: Find an independent set in a path G whose total weight is as large as possible.

(a) What is the maximum-weight independent set in the example?

(b) Give an example to show that the following algorithm does not always find an independent set of maximum total weight.

```
Start with $S$ equal to the empty set
while some node remains in $G$ do
    Pick a node $v_i$ of maximum weight
    Add $v_i$ to $S$
    Delete $v_i$ and its neighbors from $G$
return $S$
```

(c) Give an example to show that the following algorithm also does not always find an independent set of maximum total weight.

```
Let $S_1$ be the set of all $v_i$ where $i$ is an odd number
Let $S_2$ be the set of all $v_i$ where $i$ is an even number
(Note that $S_1$ and $S_2$ are both independent sets)
Determine which of $S_1$ or $S_2$ has greater total weight, and return this one
```
(d) Give an algorithm with $O(n)$ running time that takes an n-node path G with weights and returns the weight of the largest independent set.

(e) Now give an $O(n)$ algorithm to compute the maximum-weight independent set itself. Your algorithm should use values stored in the memoization array from your previous algorithm to trace back through the array and construct the optimal solution. (Hint: given the memoization array, how can you tell whether node v_n is in the optimal solution?)