Instructions. Limited collaboration is allowed while solving problems, but you must write solutions yourself. List collaborators on your submission.

You can choose which problems to complete, but must submit at least one problem per assignment. See the course page for information about how challenge problems are graded and contribute to your homework grade. Since you don’t need to complete every problem, you are encouraged to focus your efforts on producing high-quality solutions to the problems you feel confident about. There is no benefit to guessing or writing vague answers.

If you are asked to design an algorithm, please (a) give a precise description of your algorithm using either pseudocode or language, (b) explain the intuition of the algorithm, (c) justify the correctness of the algorithm; give a proof if needed, (d) state the running time of your algorithm, (e) justify the running-time analysis.

Submissions. Please submit a PDF file. You may submit a scanned handwritten document, but a typed submission is preferred. Please assign pages to questions in Gradescope.

1 Challenge Problems

Problem 1. Signed Networks. A group of historians collects information about alliances and conflicts between countries in the pre-war era. There are \(n \) countries total. For each pair \((i, j)\), the historians label \((i, j)\) with a “+” if \(i\) and \(j\) are allies, and with a “−” if \(i\) and \(j\) are enemies. Some pairs are neither allies nor enemies, and do not receive a label.

There are \(m \) pairs of countries that receive labels, and the historians want to know if the labels are consistent with a conflict between two distinct sides \(A \) and \(B \). Specifically, we’ll say that the labels are consistent if it is possible to label each country with either \(A \) or \(B \) such that for each pair \((i, j)\) labeled “+”, both \(i\) and \(j\) have the same label, and for each pair \((i, j)\) labeled “−”, \(i\) and \(j\) have different labels.

Give an algorithm with running time \(O(m + n) \) that determines whether the \(m \) labels are consistent.

Problem 2. K&T Ch 3 Ex 9 Let \(G = (V, E) \) be an \(n \) node undirected graph containing two nodes \(s \) and \(t \), such that the distance between \(s \) and \(t \) is strictly greater than \(n/2 \). Show that there must be some node \(v \), not equal to either \(s \) or \(t \) such that deleting \(v \) from \(G \) destroys all \(s - t \) paths. In other words, the graph \(G' \) obtained by deleting \(v \) contains no paths from \(s \) to \(t \). Give an algorithm with running time \(O(m + n) \) to find such a node \(v \). (Hint: consider a BFS starting at some node. Think about the layers.)

Problem 3. Directed Graphs. Given a directed acyclic graph \(G \), give an algorithm with running time \(O(m + n) \) to determine if the graph has a directed path that visits every vertex. Give a clear proof of correctness that argues that the algorithm outputs “yes” if and only if such a path exists.

Problem 4. Greedy stays ahead. You fail to land a good internship for the summer so you end up working in the UMass mail room. The job is really boring. You stand at a conveyor belt and put mail items from the conveyor belt into boxes. It turns out that all of the mail is headed to the CS department! Each box has a fixed limit \(W \) on how much weight it can hold, and the items arrive on the conveyor belt one by one: the \(i \)th item that arrives has weight \(w_i \). The rules of the job are really draconian: you must fill one box at a time and send it to the CS department before starting on the next box, and you must pack items into boxes in exactly the order they arrive on the conveyor belt. So, your only real decision is how many items to pack in each box before you send it off to the CS department.

You decide to try a simple greedy algorithm: pack items into the current box in the order they arrive, and, whenever the next item does not fit, send the current box and start a new one.
Is it possible that this will cause you to use more boxes than necessary? That is, could you decrease the overall number of boxes by packing one box less full, so that items somehow fit more efficiently into later boxes?

Prove that, for a given set of items with specified weights, your greedy algorithm minimizes the number of boxes that are needed. Your proof should follow the type of analysis used in the book for the Interval Scheduling Problem: it should establish the optimality of this greedy packing algorithm by identifying a measure under which it stays ahead of all other solutions.

Here is some notation and a few definitions to help formulate the problem precisely.

- Assume the items are numbered 1, 2, ..., n and arrive in order, and that item i has weight \(w_i \).
- Let \(i_k \) be the number of items packed in the first \(k \) boxes by the greedy algorithm (equivalently, \(i_k \) is the number of the last item packed in box \(k \)).
- Similarly, consider any optimal solution \(O \) and let \(j_k \) be the number of items packed in the first \(k \) boxes by \(O \).

Here are some recommended steps to follow to develop a solution. (You don’t need to submit answers to all of these. Your final proof will be graded based on clarity and completeness in solving the problem as stated above.)

- Create an example where you select a specific value for \(W \), and make up weights for a sequence of \(n \) items that requires at least three boxes. Design your example so there are at least two different optima solutions. Indicate the values \(i_1, i_2, \ldots, i_p \) for the greedy solution, as well as the values \(j_1, \ldots, j_q \) for a different optimal solution.
- Write down an inequality that is always true for the quantities \(i_1 \) and \(j_1 \) and explain your reasoning.
- Formulate a “claim”: an inequality comparing \(i_k \) and \(j_k \) that is true for \(k \geq 1 \), which you will prove by induction.
- Prove your claim by induction.
- Now argue that your claim implies that the greedy algorithm is optimal, i.e., that \(p = q \) where \(p \) is the number of boxes used by the greedy algorithm and \(q \) is the number of boxes used by the optimal solution.