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I HW 6 due Tuesday
I Office hour Sunday 3-4pm in Clapp 202
I Or on Monday by appt.

6 Degrees of Separation

Stanley Milgram, 1960s20.3. DECENTRALIZED SEARCH 617

Figure 20.4: An image from Milgram’s original article in Psychology Today, showing a “com-
posite” of the successful paths converging on the target person. Each intermediate step is
positioned at the average distance of all chains that completed that number of steps. (Image
from [297].)

on the much more interesting experiment of constructing paths by “tunneling” through the

network, with the letter advancing just one person at a time — a process that could well

have failed to reach the target, even if a short path existed.

So the success of the experiment raises fundamental questions about the power of collec-

tive search: even if we posit that the social network contains short paths, why should it have

been structured so as to make this type of decentralized search so e↵ective? Clearly the net-

work contained some type of “gradient” that helped participants guide messages toward the

target. As with the Watts-Strogatz model, which sought to provide a simple framework for

thinking about short paths in highly clustered networks, this type of search is also something

we can try to model: can we construct a random network in which decentralized routing

succeeds, and if so, what are the qualitative properties that are crucial for success?

A model for decentralized search. To begin with, it is not di�cult to model the kind

of decentralized search that was taking place in the Milgram experiment. Starting with the

grid-based model of Watts and Strogatz, we suppose that a starting node s is given a message

that it must forward to a target node t, passing it along edges of the network. Initially s

only knows the location of t on the grid, but, crucially, it does not know the random edges

out of any node other than itself. Each intermediate node along the path has this partial

information as well, and it must choose which of its neighbors to send the message to next.

These choices amount to a collective procedure for finding a path from s to t — just as the

participants in the Milgram experiment collectively constructed paths to the target person.

I 296 “random” starters in Omaha, NE and Wichita, KS
I “Forward letter to target by sending to someone you know on

first name basis with same instructions
I Target = stock-broker in Sharon, MA; known address and

occupation

6 Degrees of Separation

Results
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Figure 2.10: A histogram from Travers and Milgram’s paper on their small-world experiment
[391]. For each possible length (labeled “number of intermediaries” on the x-axis), the plot
shows the number of successfully completed chains of that length. In total, 64 chains reached
the target person, with a median length of six.

such short paths, was a striking fact when it was first discovered, and it remains so today.

Of course, it is worth noting a few caveats about the experiment. First, it clearly doesn’t

establish a statement quite as bold as “six degrees of separation between us and everyone

else on this planet” — the paths were just to a single, fairly a✏uent target; many letters

never got there; and attempts to recreate the experiment have been problematic due to lack

of participation [255]. Second, one can ask how useful these short paths really are to people

in society: even if you can reach someone through a short chain of friends, is this useful to

you? Does it mean you’re truly socially “close” to them? Milgram himself mused about this

in his original paper [297]; his observation, paraphrased slightly, was that if we think of each

person as the center of their own social “world,” then “six short steps” becomes “six worlds

apart” — a change in perspective that makes six sound like a much larger number.

Despite these caveats, the experiment and the phenomena that it hints at have formed

a crucial aspect in our understanding of social networks. In the years since the initial

experiment, the overall conclusion has been accepted in a broad sense: social networks tend

to have very short paths between essentially arbitrary pairs of people. And even if your six-

Results:
I 64 chains completed
I median path length

of complete chains =
6

Erdos Number
38 CHAPTER 2. GRAPHS

Figure 2.12: Ron Graham’s hand-drawn picture of a part of the mathematics collaboration
graph, centered on Paul Erdös [189]. (Image from http://www.oakland.edu/enp/cgraph.jpg)

distances look like.

One of the largest such computational studies was performed by Jure Leskovec and Eric

Horvitz [273]. They analyzed the 240 million active user accounts on Microsoft Instant

Messenger, building a graph in which each node corresponds to a user, and there is an

edge between two users if they engaged in a two-way conversation at any point during a

month-long observation period. As employees of Microsoft at the time, they had access to

a complete snapshot of the system for the month under study, so there were no concerns

about missing data. This graph turned out to have a giant component containing almost

all of the nodes, and the distances within this giant component were very small. Indeed,

the distances in the Instant Messenger network closely corresponded to the numbers from

Milgram’s experiment, with an estimated average distance of 6.6, and an estimated median

Other Examples in Pop Culture

I Kevin Bacon game. “Bacon number”
I Erdos-Bacon number
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Abstract

Frigyes Karinthy, in his 1929 short story “Láncszemek”
(“Chains”) suggested that any two persons are distanced by
at most six friendship links.1 Stanley Milgram in his famous
experiment [20, 23] challenged people to route postcards to a
fixed recipient by passing them only through direct acquain-
tances. The average number of intermediaries on the path
of the postcards lay between 4.4 and 5.7, depending on the
sample of people chosen.

We report the results of the first world-scale social-network
graph-distance computations, using the entire Facebook net-
work of active users (⇡ 721 million users, ⇡ 69 billion friend-
ship links). The average distance we observe is 4.74, cor-
responding to 3.74 intermediaries or “degrees of separation”,
showing that the world is even smaller than we expected, and
prompting the title of this paper. More generally, we study
the distance distribution of Facebook and of some interest-
ing geographic subgraphs, looking also at their evolution over
time.

The networks we are able to explore are almost two orders
of magnitude larger than those analysed in the previous liter-
ature. We report detailed statistical metadata showing that
our measurements (which rely on probabilistic algorithms)
are very accurate.

1 Introduction

At the 20th World–Wide Web Conference, in Hyderabad, In-
dia, one of the authors (Sebastiano) presented a new tool for

⇤Facebook.
†DSI, Università degli Studi di Milano, Italy. Paolo Boldi, Marco

Rosa and Sebastiano Vigna have been partially supported by a Ya-
hoo! faculty grant and by MIUR PRIN “Query log e web crawling”.

1The exact wording of the story is slightly ambiguous: “He bet us
that, using no more than five individuals, one of whom is a personal ac-
quaintance, he could contact the selected individual [. . . ]”. It is not com-
pletely clear whether the selected individual is part of the five, so this
could actually allude to distance five or six in the language of graph the-
ory, but the “six degrees of separation” phrase stuck after John Guare’s
1990 eponymous play. Following Milgram’s definition and Guare’s inter-
pretation (see further on), we will assume that “degrees of separation”
is the same as “distance minus one”, where “distance” is the usual path
length (the number of arcs in the path).

studying the distance distribution of very large graphs: Hy-
perANF [3]. Building on previous graph compression [4] work
and on the idea of diffusive computation pioneered in [21],
the new tool made it possible to accurately study the dis-
tance distribution of graphs orders of magnitude larger than
it was previously possible.

One of the goals in studying the distance distribution is the
identification of interesting statistical parameters that can
be used to tell proper social networks from other complex
networks, such as web graphs. More generally, the distance
distribution is one interesting global feature that makes it
possible to reject probabilistic models even when they match
local features such as the in-degree distribution.

In particular, earlier work had shown that the spid2,
which measures the dispersion of the distance distribution,
appeared to be smaller than 1 (underdispersion) for so-
cial networks, but larger than one (overdispersion) for web
graphs [3]. Hence, during the talk, one of the main open
questions was “What is the spid of Facebook?”.

Lars Backstrom happened to listen to the talk, and sug-
gested a collaboration studying the Facebook graph. This
was of course an extremely intriguing possibility: beside test-
ing the “spid hypothesis”, computing the distance distribution
of the Facebook graph would have been the largest Milgram-
like [20] experiment ever performed, orders of magnitudes
larger than previous attempts (during our experiments Face-
book has ⇡ 721 million active users and ⇡ 69 billion friend-
ship links).

This paper reports our findings in studying the distance
distribution of the largest electronic social network ever cre-
ated. That world is smaller than we thought: the average
distance of the current Facebook graph is 4.74. Moreover, the
spid of the graph is just 0.09, corroborating the conjecture [3]
that proper social networks have a spid well below one. We
also observe, contrary to previous literature analysing graphs
orders of magnitude smaller, both a stabilisation of the aver-
age distance over time, and that the density of the Facebook
graph over time does not neatly fit previous models.

Towards a deeper understanding of the structure of the
Facebook graph, we also apply recent compression techniques

2The spid (shortest-paths index of dispersion) is the variance-to-
mean ratio of the distance distribution.
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it se itse us fb
Original 14.8 (83%) 14.0 (86%) 15.0 (82%) 17.2 (82%) 20.1 (86%)

LLP 10.3 (58%) 10.2 (63%) 10.3 (56%) 11.6 (56%) 12.3 (53%)

Table 1: The number of bits per link and the compression ratio (with respect to the information-theoretical lower bound)
for the current graphs in the original order and for the same graphs permuted by layered label propagation [2].
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Figure 2: The probability mass functions of the distance
distributions of the current graphs (truncated at distance 10).

data shows. In particular, the it and se subgraphs from
January 1, 2007 were highly disconnected, as shown by the
incredibly low percentage of reachable pairs we estimate in
Table 9. Even Facebook itself was rather disconnected, but
all the data we compute stabilizes (with small oscillations)
after 2009, with essentially all pairs reachable. Thus, we con-
sider the data for 2007 and 2008 useful to observe the evolu-
tion of Facebook, but we do not consider them representative
of the underlying human social-link structure.

it se itse us fb
2007 1.31 3.90 1.50 119.61 99.50
2008 5.88 46.09 36.00 106.05 76.15
2009 50.82 69.60 55.91 111.78 88.68
2010 122.92 100.85 118.54 128.95 113.00
2011 198.20 140.55 187.48 188.30 169.03

current 226.03 154.54 213.30 213.76 190.44

Table 4: Average degree of the datasets.
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Figure 3: The average distance graph. See also Table 6.

it se itse us fb
2007 0.04 10.23 0.19 100.00 68.02
2008 25.54 93.90 80.21 99.26 89.04

Table 9: Percentage of reachable pairs 2007–2008.

4.4 The distribution

Figure 2 displays the probability mass functions of the cur-
rent graphs. We will discuss later the variation of the average
distance and spid, but qualitatively we can immediately dis-
tinguish the regional graphs, concentrated around distance
four, and the whole Facebook graph, concentrated around
distance five. The distributions of it and se, moreover, have
significantly less probability mass concentrated on distance
five than itse and us. The variance data (Table 7 and Fig-
ure 4) show that the distribution became quickly extremely
concentrated.
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Distance measurements on Facebook graph

The World is Getting Smaller

it se itse us fb
Original 14.8 (83%) 14.0 (86%) 15.0 (82%) 17.2 (82%) 20.1 (86%)

LLP 10.3 (58%) 10.2 (63%) 10.3 (56%) 11.6 (56%) 12.3 (53%)

Table 1: The number of bits per link and the compression ratio (with respect to the information-theoretical lower bound)
for the current graphs in the original order and for the same graphs permuted by layered label propagation [2].
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incredibly low percentage of reachable pairs we estimate in
Table 9. Even Facebook itself was rather disconnected, but
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it se itse us fb
2007 0.04 10.23 0.19 100.00 68.02
2008 25.54 93.90 80.21 99.26 89.04

Table 9: Percentage of reachable pairs 2007–2008.

4.4 The distribution

Figure 2 displays the probability mass functions of the cur-
rent graphs. We will discuss later the variation of the average
distance and spid, but qualitatively we can immediately dis-
tinguish the regional graphs, concentrated around distance
four, and the whole Facebook graph, concentrated around
distance five. The distributions of it and se, moreover, have
significantly less probability mass concentrated on distance
five than itse and us. The variance data (Table 7 and Fig-
ure 4) show that the distribution became quickly extremely
concentrated.
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Should real networks have short paths?

Exercise: discuss with a partner. One of you argue why. One of
you argue why not.

Should real networks have short paths?

Argument for “yes” answer: exponential growth in number of
contacts at increasing distance20.2. STRUCTURE AND RANDOMNESS 613

you

your friends

friends of your friends

(a) Pure exponential growth produces a small world

you

your friends

friends of your friends

(b) Triadic closure reduces the growth rate

Figure 20.1: Social networks expand to reach many people in only a few steps.

people brings us to more than 100 · 100 · 100 = 1, 000, 000 people who in principle could be

three steps away. In other words, the numbers are growing by powers of 100 with each step,

bringing us to 100 million after four steps, and 10 billion after five steps.

There’s nothing mathematically wrong with this reasoning, but it’s not clear how much

it tells us about real social networks. The di�culty already manifests itself with the second

step, where we conclude that there may be more than 10, 000 people within two steps of you.

As we’ve seen, social networks abound in triangles — sets of three people who mutually

know each other — and in particular, many of your 100 friends will know each other. As a

result, when we think about the nodes you can reach by following edges from your friends,

many of these edges go from one friend to another, not to the rest of world, as illustrated

schematically in Figure 20.1(b). The number 10, 000 came from assuming that each of your

100 friends was linked to 100 new people; and without this, the number of friends you could

reach in two steps could be much smaller.

So the e↵ect of triadic closure in social networks works to limit the number of people

you can reach by following short paths, as shown by the contrast between Figures 20.1(a)

Should real networks have short paths?

Argument for “no” answer: real graphs exhibit triadic closure

20.2. STRUCTURE AND RANDOMNESS 613

you
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friends of your friends

(a) Pure exponential growth produces a small world

you

your friends

friends of your friends

(b) Triadic closure reduces the growth rate

Figure 20.1: Social networks expand to reach many people in only a few steps.

people brings us to more than 100 · 100 · 100 = 1, 000, 000 people who in principle could be

three steps away. In other words, the numbers are growing by powers of 100 with each step,

bringing us to 100 million after four steps, and 10 billion after five steps.

There’s nothing mathematically wrong with this reasoning, but it’s not clear how much

it tells us about real social networks. The di�culty already manifests itself with the second

step, where we conclude that there may be more than 10, 000 people within two steps of you.

As we’ve seen, social networks abound in triangles — sets of three people who mutually

know each other — and in particular, many of your 100 friends will know each other. As a

result, when we think about the nodes you can reach by following edges from your friends,

many of these edges go from one friend to another, not to the rest of world, as illustrated

schematically in Figure 20.1(b). The number 10, 000 came from assuming that each of your

100 friends was linked to 100 new people; and without this, the number of friends you could

reach in two steps could be much smaller.

So the e↵ect of triadic closure in social networks works to limit the number of people

you can reach by following short paths, as shown by the contrast between Figures 20.1(a)

Which one of these forces wins? (exponential growth)

Watts-Strogatz: Small World Networks

Is there a natural model for networks that have triadic closure and
short paths?

Watts-Strogatz late 1990s:

I n nodes arranged in a grid (1d, 2d, etc.) that “wraps around”
I Each node has links to

I all nodes within grid distance d (triadic closure)
I k random nodes

Example and Demo



Watts-Strogatz: Small World Networks

Can show mathematically that Watts-Strogatz networks have:

I many triangles
I short paths (roughly logarithmic in number of nodes)

Board work: what is a short path?

Milgram’s Experiment Reconsidered

OK, so short paths exist. But how do people find them?20.3. DECENTRALIZED SEARCH 617

Figure 20.4: An image from Milgram’s original article in Psychology Today, showing a “com-
posite” of the successful paths converging on the target person. Each intermediate step is
positioned at the average distance of all chains that completed that number of steps. (Image
from [297].)

on the much more interesting experiment of constructing paths by “tunneling” through the

network, with the letter advancing just one person at a time — a process that could well

have failed to reach the target, even if a short path existed.

So the success of the experiment raises fundamental questions about the power of collec-

tive search: even if we posit that the social network contains short paths, why should it have

been structured so as to make this type of decentralized search so e↵ective? Clearly the net-

work contained some type of “gradient” that helped participants guide messages toward the

target. As with the Watts-Strogatz model, which sought to provide a simple framework for

thinking about short paths in highly clustered networks, this type of search is also something

we can try to model: can we construct a random network in which decentralized routing

succeeds, and if so, what are the qualitative properties that are crucial for success?

A model for decentralized search. To begin with, it is not di�cult to model the kind

of decentralized search that was taking place in the Milgram experiment. Starting with the

grid-based model of Watts and Strogatz, we suppose that a starting node s is given a message

that it must forward to a target node t, passing it along edges of the network. Initially s

only knows the location of t on the grid, but, crucially, it does not know the random edges

out of any node other than itself. Each intermediate node along the path has this partial

information as well, and it must choose which of its neighbors to send the message to next.

These choices amount to a collective procedure for finding a path from s to t — just as the

participants in the Milgram experiment collectively constructed paths to the target person.

Simple algorithm: pass the message to your neighbor that is
closest to the target. Will this work?

Milgran’s Experiment Reconsidered

Simple algorithm: pass the message to your neighbor that is
closest to the target. Will this work?

This does not work for Watts-Strogatz models. Long-range
contacts are “too random”

Enter Kleinberg. . .

Kleinberg’s Model for Decentralized Search

I Nodes arranged in 2d-grid
I Each node has connections to

I Grid neighbors
I One random long-range contact (but not uniformly

random. . . )

Long-range contact: select a node at distance d with probability
proportional to 1/dr

Example and demo of

Effect of r

I Small r: links are very long-range. Like Watts-Strogatz
I Big r: links are short-range
I Kleinberg’s main result: r = 2 is “just right”. Links spread over

many different distance scales

Result: when r = 2, then short paths exist and people can find
them. For grids with n nodes, the number of hops to find the
target is about (log n)2

As n → ∞, r = 2 is the only value that works.

Effect of r

Empirical evaluation on grid with 400M nodes
620 CHAPTER 20. THE SMALL-WORLD PHENOMENON
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Figure 20.6: Simulation of decentralized search in the grid-based model with clustering
exponent q. Each point is the average of 1000 runs on (a slight variant of) a grid with 400
million nodes. The delivery time is best in the vicinity of exponent q = 2, as expected; but
even with this number of nodes, the delivery time is comparable over the range between 1.5
and 2 [248].

large network size — than with any other exponent. But even without the full details of the

proof, there’s a short calculation that suggests why the number 2 is important. We describe

this now.

In the real world where the Milgram experiment was conducted, we mentally organize

distances into di↵erent “scales of resolution”: something can be around the world, across

the country, across the state, across town, or down the block. A reasonable way to think

about these scales of resolution in a network model — from the perspective of a particular

node v — is to consider the groups of all nodes at increasingly large ranges of distance from

v: nodes at distance 2-4, 4-8, 8-16, and so forth. The connection of this organizational

scheme to decentralized search is suggested by Figure 20.4: e↵ective decentralized search

“funnels inward” through these di↵erent scales of resolution, as we see from the way the

letter depicted in this figure reduces its distance to the target by approximately a factor of

two with each step.

So now let’s look at how the inverse-square exponent q = 2 interacts with these scales of

resolution. We can work concretely with a single scale by taking a node v in the network,

and a fixed distance d, and considering the group of nodes lying at distances between d and

2d from v, as shown in Figure 20.7.

Now, what is the probability that v forms a link to some node inside this group? Since

area in the plane grows like the square of the radius, the total number of nodes in this group

is proportional to d2. On the other hand, the probability that v links to any one node in

the group varies depending on exactly how far out it is, but each individual probability

is proportional to d�2. These two terms — the number of nodes in the group, and the

Demo



To Be Continued

Next time:

I A rough calculation to justify this
I Empirical support for exponent r = 2

A Rough Calculation to Justify This

(Informal) If r = 2, then a user has roughly equal probability of
having a link at any distance scale

Revisit Milgram figure

Rough calculation on board

Empirical Support

Next time: empirical support for the exponent r = 2.


