Announcements

• HW 5 due Tuesday

Epidemics in Networks

CS 103 Networks
Dan Sheldon

Epidemics

- Beginning of study of network processes
 - How do networks affect the world?
- · Beautiful models with many connections
 - Spread of disease, rumors
 - Adoption of new behaviors
 - Animal populations in fragmented landscapes

Habitat Loss and Fragmentation

Habitat Loss and Fragmentation

• Which configuration is better?

Epidemics and Rumors

- · Branching process
 - Will disease or rumor spread widely?
 - A simple mathematical result

A dichotomy

- Branching factor k, infection probability p.
- Let $R_0 = pk$ be the basic reproductive number
 - # of new infections created by a single infection
- · Claim:
 - If $R_0 < 1$, the disease dies out quickly
 - If $R_0 > 1$, the disease spreads widely

Discuss, make precise, and prove on board

SIR Model

- What is unsatisfying about the branching process model for epidemics?
- SIR model for epidemics on general graphs
- Nodes can be in three states:
 - (S) Susceptible: not yet infected
 - (I) Infectious: infected, can infect others
 - (R) Removed: no longer infectious; immune

SIR Model

Example on board

- Initially
 - Some nodes infected (I)
 - All others susceptible (S)
- · When node v first becomes infected
 - Pass disease to each susceptible (S) neighbor with probability p
 - After one time step, no longer infectious; becomes removed (R)

Basic Reproductive Number for SIR?

- Will disease die out quickly or spread broadly?
- Q: Is there still a dichotomy with respect to R₀?
 - Suppose each node has k neighbors
 - Infection probability is p
 - Let $R_0 = pk$.
 - Q: Do we still have dichotomy: $R_0 < 1$ vs. $R_0 > 1$?
- A: No. Example.

Basic Reproductive Number for SIR?

- In general, SIR still exhibits "knife-edge" behavior with respect to p and other parameters
 - Below threshold: die out quickly
 - Above threshold: spread widely
- Much harder to analyze in general graphs

Metapopulations

• Dynamics of spatially disjoint populations

Metapopulation = population of populations

Simple Metapopulation Model

- Patches 1,...,n
- Time steps 1,...,T
- Dynamics:
 - Local extinction
 - Colonization

Occupied patch goes extinct with probability q

Metapopulation Update Rules

- Patch a colonizes patch b with probability p_{ab}
- Patch is occupied in next time step if
 - currently occupied and does not go extinct
 - or colonized by another patch

Metapopulation = SIR

• A metapopulation model is a spreading process

Metapopulation = SIR

• A metapopulation model is a spreading process

Metapopulation = SIR

A metapopulation model is a spreading process

Metapopulation = SIR

• A metapopulation model is a spreading process

Simple Example

• All probabilities equal to p

– Will population go extinct?

Two More Experiments

Habitat Degradation

 What happens as yearly survival probability q decreases?

