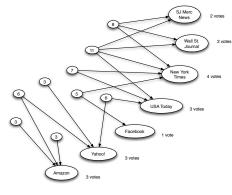
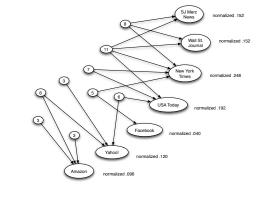

	Announcements
CS 103: Lecture 12 Link Analysis for Web Search Dan Sheldon November 18, 2015	 HW 3 back today HW 4 due today Midterm Tuesday Guest lecture next Thursday in Cleveland L2
Midterm: Topics Graph Theory Strong and Weak Ties Signed networks and structural balance Game theory Braess's paradox / traffic in networks Auctions	Midterm: What You Don't Need to Know
 Matching markets Network exchange Be able to do problems like those on your homework and answer short conceptual questions about these topics 	
 Web Search Web search is hard! Some history: Information retrieval ca. 1960s Keyword search of curated collections (libraries, patents, etc.) "Inverted index" Challenges synonymy: two words, one meaning green onions vs. scallions polysemy: one word, two meanings Yosemite (Mac OS) vs. Yosemite (National Park) Try this: "window installation" vs. "install windows" 	 Web Search The Web made a hard problem harder Huge diversity of documents E.g., millions of documents relevant to "Holyoke" MHC home, US News and World Report, Mount Holyoke State Park, City of Holyoke, Pages about alums, etc. How to find <i>best</i> or <i>most authoritative documents</i>? Link-analysis (late 1990s) Hubs and Authorities (Kleinberg) PageRank (Google)

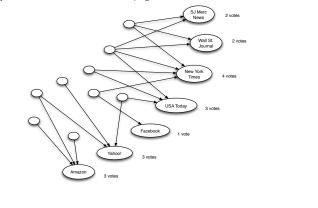
Hubs and Authorities


E.g., query "newspaper"

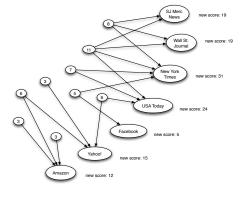
- first use text-based retrieval to get a set of relevant documents
- then use links among them to determine which are authoritative


Hubs

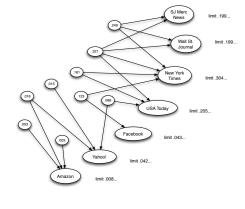
Step 2: pages that link to more authoritative sites are better information brokers ("hub score")

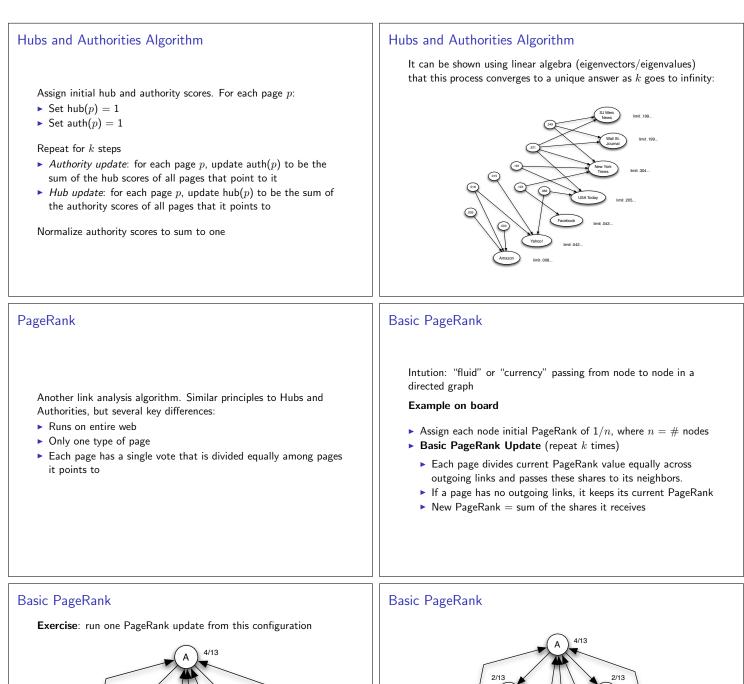

Normalization

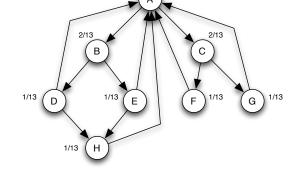
 $\ensuremath{\mathsf{Problem:}}$ scores are getting very big. Let's normalize them to sum to one.

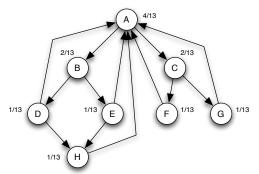

Hubs and Authorities

Step 1: an inlink is a vote for a page

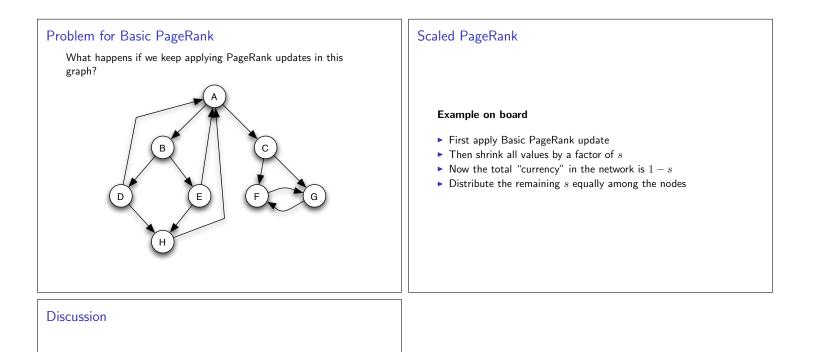

Authorities


 $\label{eq:Step 3: update authority scores as sum of hub scores from linking pages$




Wash, Rinse, Repeat

If we repeat forever, this is what we get:



If you run PageRank long enough, it will converge to *equilibrium values*, unless...

- ► Use of PageRank over the years
- Other applications of PageRank
- Manipulation