	Announcements
CS 103: Lecture 5 More Game Theory Dan Sheldon September 24, 2015	 HW 1 due now HW 2 posted tomorrow, due next Thursday Blog posts Tuesday
Plan for today	Review
 More game theory Nash equilibra Mixed strategies 	 Draw Prisoner's dilemma on board What are strategies of player 1? List all the outcomes of the game What is P₁(C, NC)?
Best Response	Example
Definition : strategy S for player 1 is a best response (BR) to strategy T of player 2 if no other strategy S' gives higer payoff when paired with T $P_1(S,T) \ge P_1(S',T)$ for all other strategies S'	 Best Responses in Prisoner's Dilemma (PD) P1: C is BR to NC P1: C is BR to C C is a BR for P1 <i>for any strategy</i> of P2 → easy to predict what P1 will do (C) Same for P2: we should expect (C,C)

Dominant Strategy	What if players do not have dominant strategies?
 Definition: strategy S for Player 1 is a dominant strategy (DS) if it is a best response to every strategy by Player 2 Example (PD): P1: C is BR to NC P1: C is BR to C C is a dominant strategy for Player 1 	 Example 2 (on board) Reason on board. Summary: P1: A is BR to X P1: A is BR to Y P1: A is a dominant strategy P2: X is BR to A P2: Y is BR to B P2: no dominant strategy What will happen? Still easy to predict: P1 will play A (DS) P2 will play X (BR to A)
Nash Equilibria	Examples
 What if neither player has a dominant strategy? Definition: A Nash equilibrium is a pair of strategies that are best responses to each other. John Nash 1950 Central notion of game theory What we predict as the result of rational play If the outcome is not a Nash equilibrium, a player can improve payoff by changing her strategy 	We've already seen two examples Prisoner's dilemma: (C, C) Example 2: (A, X)
Example: coordination game	Examples
Your Partner PowerPoint Keynote You PowerPoint Keynote 1,1 0,0 0,0 1,1 0.0 1,1 • What are best responses for P1 (you) and P2 (your partner)? • Are there any dominant strategies? • Which outcomes are Nash equilibria?	 Draw two more examples on board Exercise: What real-world situation does this game model? What are best responses for P1 and P2? Are there any dominant stratgies? What are Nash equilibria?

Nash Equilibrium	Example: Penalty Kicks
Is this the right concept to predict the outcomes of a game? Does <i>every</i> game have a Nash equilibrium? If not, what will happen? Example on board: rock-paper-scissors Some games have no Nash equilibria. In these situtations, players play <i>mixed stratgies</i> (choose strategy randomly)	 Draw game on board Mixed strategy for P1 (kicker): Kick L with probability p Kick R with probability 1 - p Mixed strategy for P2 (goalie): Defend L with probability q Defend R with probability 1 - q
Payoffs?	Mixed Strategy Nash Equilibrium
 How do we evaluate payoffs under mixed strategies? Suppose goalie's mixed strategy is q, What are kicker's payoffs for kicking L / R? (work out on board) Kick L: 1/2 · q + 3/4 · (1 - q) Kick R: 1 · q + 1/2 · (1 - q) Goalie's payoffs if kicker's mixed strategy is p: Defend L: 1/2 · p + 0 · (1 - p) Defend R: 1/4 · p + 1/2 · (1 - p) 	Goalie should choose q so kicker get's equal payoff from each strategy. Why? Work out on board Result: $q = 1/3$, $p = 2/3$ Note: kicker chooses less powerful strategy most of the time. Why?
Mixed Strategy Nash Equilibrium	Empirical Analysis (Palacio-Huerta, 2002)
Famous result by John Nash: there is <i>always</i> a mixed strategy Nash equilibrium. (Nobel prize 1994)	GoalieLRKickerL $0.58, -0.58$ $0.95, -0.95$ R $0.93, -0.93$ $0.70, -0.70$ •Payoffs based on success rates on 1400 penalty kicks•With these payoffs, we predict•Kick L with probability $p = 0.39$ •Defend L with probability $p = 0.42$ •Actual frequencies:•Kick L with probability $p = 0.40$ •Defend L with probability $p = 0.42$