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Announcements

I HW 1 due now

I HW 2 posted tomorrow, due next Thursday

I Blog posts. . . . Tuesday

Plan for today

I More game theory

I Nash equilibra
I Mixed strategies

Review

Draw Prisoner’s dilemma on board

I What are strategies of player 1?
I List all the outcomes of the game
I What is P1(C,NC)?

Best Response

Definition: strategy S for player 1 is a best response (BR) to
strategy T of player 2 if no other strategy S′ gives higer payoff
when paired with T

P1(S, T ) ≥ P1(S
′, T ) for all other strategies S′

Example

Best Responses in Prisoner’s Dilemma (PD)

I P1: C is BR to NC
I P1: C is BR to C

C is a BR for P1 for any strategy of P2 → easy to predict what P1
will do (C)

Same for P2: we should expect (C,C)



Dominant Strategy

Definition: strategy S for Player 1 is a dominant strategy (DS)
if it is a best response to every strategy by Player 2

Example (PD):

I P1: C is BR to NC
I P1: C is BR to C

C is a dominant strategy for Player 1

What if players do not have dominant strategies?

Example 2 (on board)

Reason on board. Summary:

I P1: A is BR to X
I P1: A is BR to Y
I P1: A is a dominant strategy

I P2: X is BR to A
I P2: Y is BR to B
I P2: no dominant strategy

What will happen? Still easy to predict:

I P1 will play A (DS)
I P2 will play X (BR to A)

Nash Equilibria

What if neither player has a dominant strategy?

Definition: A Nash equilibrium is a pair of strategies that are
best responses to each other.

I John Nash 1950
I Central notion of game theory
I What we predict as the result of rational play

If the outcome is not a Nash equilibrium, a player can improve
payoff by changing her strategy

Examples

We’ve already seen two examples

I Prisoner’s dilemma: (C, C)
I Example 2: (A, X)

Example: coordination game
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each preparing slides for a joint project presentation; you can’t reach your partner by phone,

and need to start working on the slides now. You have to decide whether to prepare your

half of the slides in PowerPoint or in Apple’s Keynote software. Either would be fine, but

it will be much easier to merge your slides together with your partner’s if you use the same

software.

So we have a game in which you and your partner are the two players, choosing Power-

Point or choosing Keynote form the two strategies, and the payo↵s are as shown in Figure 6.7.

You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0
Keynote 0, 0 1, 1

Figure 6.7: Coordination Game

This is called a Coordination Game because the two players’ shared goal is really to

coordinate on the same strategy. There are many settings in which coordination games

arise. For example, two manufacturing companies that work together extensively need to

decide whether to configure their machinery in metric units of measurement or English units

of measurement; two platoons in the same army need to decide whether to attack an enemy’s

left flank or right flank; two people trying to find each other in a crowded mall need to decide

whether to wait at the north end of the mall or at the south end. In each case, either choice

can be fine, provided that both participants make the same choice.

The underlying di�culty is that the game has two Nash equilibria — i.e., (Power-

Point,PowerPoint) and (Keynote,Keynote) in our example from Figure 6.7. If the players

fail to coordinate on one of the Nash equilibria, perhaps because one player expects Power-

Point to be played and the other expects Keynote, then they receive low payo↵s. So what

do the players do?

This remains a subject of considerable discussion and research, but some proposals have

received attention in the literature. Thomas Schelling [364] introduced the idea of a focal

point as a way to resolve this di�culty. He noted that in some games there are natural

reasons (possibly outside the payo↵ structure of the game) that cause the players to focus

on one of the Nash equilibria. For example, suppose two drivers are approaching each other

at night on an undivided country road. Each driver has to decide whether to move over to

the left or the right. If the drivers coordinate — making the same choice of side — then they

pass each other, but if they fail to coordinate, then they get a severely low payo↵ due to the

resulting collision. Fortunately, social convention can help the drivers decide what to do in

this case: if this game is being played in the U.S., convention strongly suggests that they

should move to the right, while if the game is being played in England, convention strongly

suggests that they should move to the left. In other words, social conventions, while often

I What are best responses for P1 (you) and P2 (your partner)?
I Are there any dominant strategies?
I Which outcomes are Nash equilibria?

Examples

Draw two more examples on board

Exercise:

I What real-world situation does this game model?
I What are best responses for P1 and P2?
I Are there any dominant stratgies?
I What are Nash equilibria?



Nash Equilibrium

Is this the right concept to predict the outcomes of a game?

Does every game have a Nash equilibrium?

If not, what will happen?

Example on board: rock-paper-scissors

Some games have no Nash equilibria. In these situtations, players
play mixed stratgies (choose strategy randomly)

Example: Penalty Kicks

Draw game on board

Mixed strategy for P1 (kicker):

I Kick L with probability p
I Kick R with probability 1− p

Mixed strategy for P2 (goalie):

I Defend L with probability q
I Defend R with probability 1− q

Payoffs?

How do we evaluate payoffs under mixed strategies?

Suppose goalie’s mixed strategy is q, What are kicker’s payoffs for
kicking L / R? (work out on board)

I Kick L: 1
2 · q + 3

4 · (1− q)
I Kick R: 1 · q + 1

2 · (1− q)

Goalie’s payoffs if kicker’s mixed strategy is p:

I Defend L: 1
2 · p+ 0 · (1− p)

I Defend R: 1
4 · p+ 1

2 · (1− p)

Mixed Strategy Nash Equilibrium

Goalie should choose q so kicker get’s equal payoff from each
strategy. Why?

Work out on board

Result: q = 1/3, p = 2/3

Note: kicker chooses less powerful strategy most of the time.
Why?

Mixed Strategy Nash Equilibrium

Famous result by John Nash: there is always a mixed strategy
Nash equilibrium. (Nobel prize 1994)

Empirical Analysis (Palacio-Huerta, 2002)
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In 2002, Ignacio Palacios-Huerta undertook a large study of penalty kicks from the per-

spective of game theory [337], and we focus on his analysis here. As he observed, penalty

kicks capture the ingredients of two-player, two-strategy games remarkably faithfully. The

kicker can aim the ball to the left or the right of the goal, and the goalie can dive to either

the left or right as well.3 The ball moves to the goal fast enough that the decisions of the

kicker and goalie are e↵ectively being made simultaneously; and based on these decisions the

kicker is likely to score or not. Indeed, the structure of the game is very much like Matching

Pennies: if the goalie dives in the direction where the ball is aimed, he has a good chance of

blocking it; if the goalie dives in the wrong direction, it is very likely to go in the goal.

Based on an analysis of roughly 1400 penalty kicks in professional soccer, Palacios-Huerta

determined the empirical probability of scoring for each of the four basic outcomes: whether

the kicker aims left or right, and whether the goalie dives left or right. This led to a payo↵

matrix as shown in Figure 6.16.

Kicker

Goalie
L R

L 0.58,�0.58 0.95,�0.95
R 0.93,�0.93 0.70,�0.70

Figure 6.16: The Penalty-Kick Games (from empirical data [337]).

There are a few contrasts to note in relation to the basic Matching Pennies Game. First,

a kicker has a reasonably good chance of scoring even when the goalie dives in the correct

direction (although a correct choice by the goalie still greatly reduces this probability).

Second, kickers are generally right-footed, and so their chance of scoring is not completely

symmetric between aiming left and aiming right.4

Despite these caveats, the basic premise of Matching Pennies is still present here: there

is no equilibrium in pure strategies, and so we need to consider how players should random-

ize their behavior in playing this game. Using the principle of indi↵erence as in previous

examples, we see that if q is the probability that a goalie chooses L, we need to set q so as

to make the kicker indi↵erent between his two options:

(.58)(q) + (.95)(1 � q) = (.93)(q) + (.70)(1 � q).

Solving for q, we get q = .42. We can do the analogous calculation to obtain the value of p

that makes the goalie indi↵erent, obtaining p = .39.

The striking punchline to this study is that in the dataset of real penalty kicks, the

goalies dive left a .42 fraction of the time (matching the prediction to two decimal places),

3Kicks up the center, and decisions by the goalie to remain in the center, are very rare, and can be ignored
in a simple version of the analysis.

4For purposes of the analysis, we take all the left-footed kickers in the data and apply a left-right reflection
to all their actions, so that R always denotes the “natural side” for each kicker.

I Payoffs based on success rates on 1400 penalty kicks
I With these payoffs, we predict

I Kick L with probability p = 0.39
I Defend L with probability p = 0.42

I Actual frequencies:

I Kick L with probability p = 0.40
I Defend L with probability p = 0.42


